
Journal of Computer Science and Applications.

ISSN 2231-1270 Volume 7, Number 1 (2015), pp. 11-19

© International Research Publication House

http://www.irphouse.com

Customization of U-Boot for TFTP and Flashloader

Siddharth Narayanan and Sameer Kadam

Research Center Imarat, DRDO Hyderabad, India 500069

Scientist-E, Research Center Imarat, DRDO Hyderabad, India 500069

Abstract

This paper proposes a booting scheme for U-Boot using TFTP and Flashloader for

booting in cases where repeated recompilation of the kernel is required and loading

from an external memory card becomes tedious. This is especially helpful with a

network connection available, where U-Boot can load files quickly and easily via

TFTP. TFTP has been cross compiled for the target board based on Power Pc 7410,

and inserted into board kernel. The mknod functionhas been used to create Device

interface files and application for scheduling message for booting target Board.The

study uses an embedded Linux development kitthat includes the GNU cross

development toolsand libraries necessary to provide some functionality on the target

system. The kit is available in two versions, which use Glibcand uClibcas the main C

library for target packages.Packaging and installation is based on the RPM package

manager. The result of the study is observed in the form of successful scheduling on

the Bus through an Extra Monitor Terminal.

Keywords- U-Boot, TFTP, Flashloader,Kermit, Embedded Linux Development,

ELDK Configuration

I. INTRODUCTION

A. U-boot

The U-Boot is an open-source, cross-platform boot loader that provides out-of-box

support for hundreds of embedded boards and many CPUs, including PowerPC,

ARM, XScale, MIPS, Cold fire, NIOS, Micro blaze, and x86. The U-Boot project is

hosted by DENX. The current version of the U-Boot source code can be retrieved

from the DENX Git repository.The trees can be accessed through the Git, HTTP, and

rsync protocols. Obtaining a copy of the U-Boot sources from the Git repository

provides an unpacked directory tree, while the DENX FTP server contains a

compressed tarball [1].As also adopted by the Linux kernel, Device tree is intended to

12 Siddharth Narayanan and Sameer Kadam

ameliorate the situation in the embedded industry, where a vast number of product

specific forks (of Das U-Boot and Linux) exist.Device tree is a data structure for

describing hardware layout. U-boot provide the basic infrastructures to bring up a

board to a point where it can load a Linux kernel and start booting your operating

system.

B. Trivial File Transfer Protocol

The Trivial File Transfer Protocol (TFTP) is a simple, lock-step, file transfer protocol

that allows a client to get from or put a file onto a remote host. One of its primary uses

is in the early stages of nodes booting from a Local Area Network. There are a few

noteworthy points for a terminal connected to the board and sitting at a U-Boot

prompt. The file will transfer in binary mode and the location of the file is relative to

the root of the TFTP server.The IP address of the board and TFTP server IP address

are controlled by the U-Boot environment variables. Any file can be loaded to any

address that is accessible to embedded processor.TFTP iseasily implemented by small

footprint code.

It is therefore the protocol of choice for the initial stages of any network

booting strategy like BOOTP, PXE, BSDP, etc., when targeting from highly

resourced computers to very low resourced Single-board computers (SBC) and

System on a Chip (SoC). It is also used to transfer firmware images and configuration

files to network appliances like routers, firewalls, IP phones, etc. Today TFTP is

virtually unused for Internet transfers.

C. Kermit

Kermit is the name of a file-transfer and -management protocol and a suite of

computer programs for many types of computers that implements that protocol as well

as other communication functions ranging from terminal emulation to automation of

communications tasks through a high-level cross-platform scripting language. The

software is transport-independent, operating over TCP/IP connections in traditional

clear-text mode or secured by SSH, SSL/TLS, or Kerberos IV or V, as well as over

serial-port connections, modems, and other communication methods. Kermit is used

for SSH sessions from the desktop to CUNIX, and by the technical staff for system

and network administration tasks [2]; for example, configuring racks full of HP blade

servers as they arrive, management of the University's telephone system, CGI

scripting, alpha paging of on-call staff, and so on. Plus, of course, by old-timers who

just plain prefer the safety and efficiency of text-mode shell sessions for email and to

get their work done; for example, software development and website management.

All popular Kermit programs can make TCP/IP network connections (clear-text or

secured), direct serial-port connections, and dialed modem connections, and can

accept incoming connections of all these types. They can also conduct interactive

terminal sessions.

The Kermit protocol has developed into a sophisticated, powerful, and

extensible transport-independent tool for file transfer and management, incorporating,

among other things:

Customization of U-Boot for TFTP and Flashloader 13

1. Transmission of multiple files in a single operation and File attribute

transmission (size, date, permissions). File name, record-format, and

character-set conversion, and File collision options, including an "update"

feature.

2. File transfer recovery (resumption of an interrupted binary-mode transfer from

the point of failure) and Auto upload and download along with Client/Server

file transfer management

3. Automatic per-file text/binary mode switching during file-group transmission

and Recursive directory-tree transfer, even between unlike platforms

4. Uniform services on serial and network connections and Internet Kermit

Service Daemon

This paper is organized as follows. In Section 2 a brief overview of the

embedded Linux development kit is given. Section 3 discusses the use of proposed

tools for a more precise and automated means of handling boot loading operations.

Section 4 describes the implementation and the results are presented in Section 5.

Section 6 gives an insight into its application. Section 7 provides the conclusion and

in Section 8 references follow

II. RESEARCH ELABORATIONS

A. Embedded Linux Development

Stable versions of the ELDK are distributed in the form of ISO images. Linux device

driver (Linux host only).For the Power Architecture® target, the ELDK distribution

was split into three independent ISO images: one targeting the 4xx family of

processors (AMCC), one targeting the ppc64 family of processors and another one for

the 8xx, 6xx, 74xx and 85xx families (Free scale). This makes the ISO images fit on

standard DVDROM media. Development versions of the ELDK are available as

directory trees so it is easy to update individual packages.

The ELDK contains an installation utility and a number of RPM packages [3],

which are installed onto the hard disk of the cross development host by the installation

procedure. The RPM packages can be logically divided into embedded Linux

development tools and target components. The first part contains the cross

development tools that are executed on the host system. Most notably, these are the

GNU cross compiler, binutils, and gdb. The target components are pre-built tools and

libraries which are executed on the target system. The ELDK includes necessary

target components to provide a minimal working NFS-based environment for the

target system.

The ELDK contains several independent sets of the target packages, one for

each supported target architecture CPU family. Each set has been built using compiler

code generation and optimization options specific to the respective target CPU family

[4].If one or more CPU family parameters are specified, only the target components

specific to the respective CPU families are installed onto the host. If omitted, the

target components for all supported target architecture CPU families are installed.

14 Siddharth Narayanan and Sameer Kadam

The components should be installed in a directory with write and execute

permissions. The installation process does not require super user privileges.

Depending on the parameters the install utility is invoked with, it installs one or more

sets of target components. If the user intends to usethe installation as a root file

system exported over NFS, then the packages must be rebuilt.The ELDK has an

RPM-based structure. After installation, the ELDK maintains its own database which

contains information about installed packages. The RPM database is kept local to the

specific ELDK installation, which allows multiple independent ELDK installations on

the host system.Also, this provides for easy installation and management of individual

ELDK packages. It is crucial that the correct rpm binary gets invoked. In case of

multiple ELDK installations, there may well be several rpm tools installed on the host

system. The rpm utility is located in the bin subdirectory relative to the ELDK root

installation directory.

The target components of the ELDK can be mounted via NFS as the root file

system for the target machine.Some of the target utilities included in the ELDK, such

as mount and su, have the SUID bit set. When run, they will have privileges of the file

owner of these utilities. The distribution image contains a script, which can be used to

change file owners of all the appropriate files of the ELDK installation to root. Super

user privileges are requiredto run this script.

B. Flash Loader Port

The Flash Loader is a targetbasedapplication that programs a user application into the

external Flash devicepresent on the development platform when using serial

communicationprotocols and a terminal application such as a HyperTerminal. The

target-basedis designed for thefollowing customer-driven scenarios:

1. When manufacturing a product requires download of an executable image into

product

2. When updating an executable image after the product is released to their

customer base (field upgrades)

3. When supporting other types of Flash devices is required. This support is

made possible by merely replacing the External Flash Loader’s Flash driver

library with the customer’s own version

III. PROPOSED CONCEPT

Many different tools are needed to install and configure U-Boot and Linux on the

target system. Also, especially during development, interactionwith the target system

is crucial. The host system must be configured appropriately for this purpose.To make

full use of all capabilities of U-Boot and Linux as development systems, a serial

console port is required on the target system. U-Boot and Linux can be configured to

allow for automatic execution without any user interaction [5].There are several ways

to access the serial console port on the target system, such as using a terminal

server,but the most common way is to attach it to a serial port on the host.

Additionally, a terminal emulation program is needed on the host system, which in

this case is Kermit.

Customization of U-Boot for TFTP and Flashloader 15

The name Kermit stands for a whole family of communications software for

serial and network connections.Kermit executes commands in its initialization

file,.kermrc, in its home directory before it executes any other commands, so this can

be easily used to customize its behavior using appropriate initialization commands.

IV. IMPLEMENTATION

It is important to check that there are no build results from any previous

configurations left in the source code directory. By default the build is performed

locally and methods can be used to change this behavior. Flash memory is used as the

storage device for the firmware on the board.A fast and simple way to write new data

to flash memory is via the use of a debugger or flash programmer with a BDM or

JTAG interface. In cases where there is no running firmware at all (for instance on

new hardware), this is the only way to install any software.

A. Installation using U-Boot

If U-Boot is already installed and running on the board, it will be replaced by the

newly downloaded image. However, the image must be erased first. Any error during

this stage could lead to a dead board and it is therefore highly recommended to have a

backup of the old, working U-Boot image.U-Boot uses a special image format when

loading the Linux kernel or ramdisk or other images. This image contains (among

other things) information about the time of creation, operating system, compression

type,image type, image name and CRC32 checksums [6].The tool mkimage is used to

create such images or to display the information they contain. When using the ELDK,

the mkimage command is already included with the other ELDK tools.

To initialize the U-Boot firmware running on the board, a terminal is

connected to the board's serial console port.The default configuration of the console

port uses a baudrate of 115200/8N1 (115200 bps, 8 Bit per character, no parity, 1 stop

bit, no handshake). This study uses Kermit as a terminal emulation program running

on a Linux host system.In the default configuration, U-Boot operates in an interactive

mode which provides a simple command line-oriented user interface using a serial

console on port UART1. In the simplest case, this means that U-Boot is ready to

receive user input. When a command is entered, U-Boot will try to run the required

action(s), and the prompt for another command.

B. FLASH memory information

The command flinfo can be used to get information about the available flash memory.

The number of flash banks is printed with information about the size and organization

into flash "sectors" or erase-units. For all sectors the start addresses are printed; write-

protected sectors are marked as read-only (RO). Some configurations of U-Boot also

mark empty sectors with an (E). A bank is an area of memory implemented by one or

more memory chips that are connected to the same chip select signal of the CPU, and

a flash sector or erase unit is the smallest area that can be erased in one operation.

With flash memory a bank is something that eventually may be erased as a whole in a

single operation. This may be more efficient (faster) than erasing the same area sector

16 Siddharth Narayanan and Sameer Kadam

by sector.In U-Boot, flash banks are numbered starting with 1, while flash sectors

start with 0.

The boot application image is stored in memory by passing arguments. During

booting a Linux kernel, arg can be the address of an initrd image. When booting a

Linux kernel which requires a flat device-tree, a third argument is required which is

the address of the device-tree blob. The bootm command is used to start operating

system images. From the image header it gets information about the type of the

operating system, the file compression method used (if any), the load and entry point

addresses, etc. The command will then load the image to the required memory

address, uncompressing it on the fly if necessary. Depending on the OS it will pass

the required boot arguments and start the OS at its entry point.The first argument to

bootm is the memory address (in RAM, ROM or flash memory) where the image is

stored, followed by optional arguments that will depend on the OS [7].Linux requires

the flattened device tree blob to be passed at boot time, and bootm expects its third

argument to be the address of the blob in memory. The second argument to bootm

depends on whether an initrd initial ramdisk image is to be used. If the kernel should

be booted with the initial ramdisk, the second argument is interpreted as the start

address of initrd (in RAM, ROM or flash memory).When booting images that have

been loaded to RAM (for instance using TFTP download) the user must be careful

that the locations where the (compressed) images are stored do not overlap with the

memory needed to load the uncompressed kernel. For instance, if a ramdisk image is

loaded at a location in low memory, it may be overwritten when the Linux kernel gets

loaded. This will cause undefined system crashes. The variables used are set to correct

addresses for a kernel, fdt blob and an initrd ramdisk image.

Parameter name Type Allowed value Default value

fname String - [empty string]

fnameWrite String - [empty string]

Figure 1:Provides a description of the configuration parameters for the Flash Loader

component

C. U-Boot Environment Variables

The U-Boot environment is a block of memory that is kept on persistent storage and

copied to RAM when U-Boot starts. It is used to store environment variables which

can be used to configure the system. The environment is protected by a CRC32

checksum. This section lists the most important environment variables, some of which

have a special meaning to U-Boot. These variables can be used to configure the

behavior of U-Boot to the user’s liking.

V. RESULTS

The designated serial port of the host is connected the port labeled UART1 on the

target board. The terminal program is then started and power supply of the board is

connected.

Customization of U-Boot for TFTP and Flashloader 17

A. Power On

Any error messages at this stage would be harmless as the system has not been

initialized yet, and will go away as soon as the environment variables have been

initialized and saved.At first, the serial number and Ethernet address of the board

must be entered. Special attention must be given here since these parameters are write

protected and cannot be changed once saved (this isusually done by the manufacturer

of the board). If there is something wrong with the parameters, the board must be

reset and the activity restarted from the beginning. A simple way to store parameters

permanently is through the saveenv command.

Figure 2:Message prompt should be displayed during the first power-on activity.

B. Setting Variables

To enter the data you have to use the U-Boot Use the variable name serial# for the

board ID and/or serial number, and ethaddr for the Ethernet address.

Figure 3: Screenshot of the message prompt for setting environment variables. The

command setenv, followed by the variable name and the data, all separated by white

space (blank and/or TAB characters) is the required format.

C. Kermit script

A Kermit script is used to automate settings during the reset procedure and the

following settings are recommended for use with U-Boot and Linux.

18 Siddharth Narayanan and Sameer Kadam

Figure 4:This example assumes that the first serial port of the host system

(/dev/ttyS0) at a baudrate of 115200 is used to connect to the target machine's serial

console port.

D. Sample Application

A sample Hello World demo application is also executed to demonstrate the

functionality. It's configured to run at address 0x00040004 and is automatically

compiled when U-Boot is built.TFTP can also be used to download the image over

the network. In this case the binary image (hello_world.bin) is used.Note that the

entry point of the program is at offset 0x0004 from the start of file, i.e. the download

address and the entry point address differ by four bytes.

Figure 5:Screenshot of sample Hello World application that is configured to run at

address 0x00040004

VI. CONCLUSION

TFTP was successfullyCross Compiled for Power Pc 7410 based board and inserted

into kernel 3.0.8 on the target Board. The application was successfully driven into

Target Board and results of scheduling on the Bus were successfully observed on

Extra Monitor Terminal.The ELDK 4.1 was installed in Linux Kernel without errors

and the U-Boot program for user space was compiled for Kernel Space in the form of

a u-boot.bin file. The Kermit file transfer and management protocol was used for

terminal emulation, automation of communication tasks and other communication

functions through high-level cross-platform language scripting.

Customization of U-Boot for TFTP and Flashloader 19

VII. REFERENCES

[1] Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, PhilippeGerum: "Building

Embedded Linux Systems 2nd edition", Paperback: 462 pages, O'Reilly &

Associates; (August 2008); ISBN 10: 0-596-52968-6; ISBN 13:

9780596529680 ISBN 059600222X Wachs, J.P., Kölsch, M., Stern, H., Edan,

Y., Vision-Based Hand-Gesture Applications. Communications of the acm, 54

(2) (2011) 60-71.

[2] Greg Kroah-Hartman: "Linux Kernel in a Nutshell", 198 pages, O'Reilly ("In

Nutshell" series), (December 2006), ISBN 10: 0-596-10079-5; ISBN 13:

9780596100797 Biswas, K.K., Basu, S., Gesture Recognition using Microsoft

Kinect, Proceedings of the IEEE International Conference on Automation,

Robotics and Applications (ICARA), Delhi, India, 6–8 December 2011.

[3] Craig Hollabaugh: "Embedded Linux: Hardware, Software, and Interfacing",

Paperback: 432 pages; Addison Wesley Professional; (March 7, 2002); ISBN

0672322269

[4] Christopher Hallinan: "Embedded Linux Primer: A Practical Real-World

Approach", 576 pages, Prentice Hall, September 2006, ISBN-10: 0-13-

167984-8; ISBN-13: 978-0-13-167984-9

[5] Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman: "Linux Device

Drivers", 3rd Edition ; Paperback: 636 pages; O'Reilly & Associates; 3rd

edition (February 2005); ISBN: 0-596-00590-31 Massa, B., Roccella S.,

Carrozza C., Dario P. (2002) Design and Development of an Underactuated

Prosthetic Hand. Proceedings of the 2002 IEEE International Conference on

Robotics and Automation, May 2002, 3374-3359.

[6] Jürgen Quade, Eva-Katharina Kunst: "Linux-Treiberentwickeln"; Broschur:

436 pages; dpunkt.verlag, Juni 2004; ISBN 3898642380 Smagt P. Grebenstein

M. Urbanek M. Fligge N. Strohmayr M Stillfried G. Parrish J. and Gustus A.

(2009) Robotics of human movements. Journal of Physiology – Paris 103,

119-132. doi: 10.1016/j.jphysparis.2009.07.009

[7] SreekrishnanVenkateswaran: "Essential Linux Device Drivers", 744 pages,

Prentice Hall, March 2008, ISBN-10: 0-13-239655-6; ISBN-13: 978-0-13-

239655-4

20 Siddharth Narayanan and Sameer Kadam

