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PART 1:  

 EQUILIBRIUM THERMODYNAMICS IN COMPRESSIBLE FLOWS 

Abstract: For an ideal gas, we have the equations of state pv = RT, de = C_vdT for a 

unit mass.  We show that for differential of q, the external heat supplied to raise the 

temperature under arbitrary conditions, is not an exact differential.  We show that 1/T 

plays the role of an integrating factor and that differential q/T is an exact differential 

for equilibrium thermodynamics.   
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We start with the following where k(T) is the thermal conduction. 

  

  

  

 

But, the Laplacian squared of (-k) is just a constant.   This implies the following: 

  

Next, divide both sides by Laplacian squared of T, to get the following: 

  

  

Therefore, the differential of q/T is an exact differential since q, the heat flux, satisfies 

the Fourier Law in a perfect or ideal gas.   
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PART 2:   

       SPEED OF SOUND UNDER SONIC CONDITIONS IN COMPRESSIBLE   

        FLOWS 

Abstract:  The speed of sound under sonic conditions c_* is obtained when u = c_* 

locally; and in an ideal gas c^2 = y (rho / p).  We show that the stagnation enthalpy 

h_s can be written has h_s = ½(y+1/y-1) (c_*)^2.  We consider now a stationary, 

normal shock with flow speed u_1 upstream and u_2 downstream.  Using the 

matching relations across the shock demonstrable u_1 times u_2 = (c_*)^2.  This 

result is called the Prandhl-Meyer equation.  By further considering the stagnation 

enthalpy and its implied relationship between u squared and c squared, we show that 

if u/c star > 1 then u/c  > 1 and that u/c > u/c star.  
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If we have the following: 

  

 

Then, we get this equation: 

  

 

Now, 
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PART 3: 

        STATIONARY OBLIQUE SHOCKS & SHOCK FRONTS IN A  

        COMPRESSIBLE FLOW 

Abstract:  Consider the flow with velocity v_1 incident on an oblique shock front 

that is stationary in the flow, making an included angle beta to the shock.  The exit 

flow speed is v_2 and is deflected by angle theta.  We obtain the appropriate balances 

across the shock, and establish that the velocity components tangential to the shock 

are continuous across the shock.  In terms of M_1 = v_1/c_1 and Beta, we show what 

the shock relations are.   

Keywords: Ideal gas, equations, thermodynamics, equilibrium, exact, differential 

 

We start with the following flows: 

  

  

We get the following shock relations: 

   

  

  

 

For normal shock and replacing Maqam with M_1 sin Beta, we get the following 

equations: 

  

   

This is the upstream/downstream Mach relationship. 

 .. 
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PART 4: 

         A SUPERSONIC COMPRESSIBLE FLOW WHERE SHOCK FORMS  

         ON A CORNER & A WEDGE 

Abstract:  A supersonic flow is incident on a corner where the corner makes an angle 

alpha.  A shock forms at the corner.  We use the results of Part 3 to determine the 

angle of the shock to the incoming flow and specify the outflow conditions.   

Similarly, an oblique shock forms where a supersonic flow is incident on a wedge.  

We show what the angle is of the shock to the wedge and where there are the outflow 

conditions.  We demonstrate that if alpha is large, roughly alpha greater than 24 

degrees say, then such a configuration cannot be maintained.  Under these conditions, 

a detached shock forms upstream of the wedge.   
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We look at mass conservation in equations of motion on a disk/plate surface.  u/v, u/r, 

w are functions of z where (u, v, w) are velocity components of r, theta and z or (r, 

theta, z) in cylindrical coordinate system with u/r = 0.   

Beta is shock wave at corner; alpha is a deflection at corner.  Therefore, we have the 

following: 

 

Using the above and tan (- alpha) instead where beta is a shock wave at a wedge and 

alpha is a deflection from a wedge such that we have the following:   

 

If M_1 = 2, then we have a maximum deflection angle.  Otherwise, M_1 implies 

alpha trending towards 0 at Beta = pi/2 (normal shock) and at Beta = arcsin of 

(1/M_1).   
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