
International Journal of Software Engineering.

ISSN 0974-3162 Volume 6, Number 1 (2015), pp. 1-7

© International Research Publication House

http://www.irphouse.com

A Survey on Component-Based Software Development

Technologies and Quality Assurance Schemes

Neha Prajapati

Department of Computer Science & Engineering
Galgotias University, Greater Noida

Greater Noida, India

Abstract

Component-based software development technique is based on the concept

where we develop software systems by selecting appropriate off-the-shelf

components and then assemble them along with well-defined software

architecture. This approach is used because the new software development

paradigm is much different from the traditional approach; quality assurance

for component-based software development is a new topic in the software

engineering community.

In this review paper survey of current component-based software technologies

and frameworks along with their advantages and disadvantages are described

as well as features they adopt. [6]

Keywords: Components, Technologies, Frameworks, Software Engineering

Introduction
Now-a-days software systems have become more and more large-scale, complex and

difficult to control. This results in high development cost, low productivity, and

unmanageable software quality. Thus, there is a demand of searching for a new,

efficient, and cost-effective software development paradigm. Here we present one of

the most promising solutions that is the component-based software development

approach. This approach is based on the idea that software systems can be developed

by selecting appropriate off-the-shelf components and then assembling them with

well-defined software architecture. This new software development approach is very

different from traditional approach in which software systems can only be

implemented from scratch. These commercial off-the-shelf (COTS) components can

be developed by different envelopers using different languages and different

platforms. This can be shown in Figure 1, where COTS components can be checked

out from a component repository, and assembled into a target software system.[5]

2 Neha Prajapati

 Component-based software engineering (CBSE) is currently in a period of rapid

growth and change. Component-based software development (CBSD) can

significantly reduce development cost and time-to-market, and improve

maintainability, reliability and overall quality of software systems. Component-based

software engineering (CBSE) is a branch of software engineering that emphasizes

the separation of concerns in respect of the wide-ranging functionality available

throughout a given software system. It is a reuse-based approach to defining,

implementing and composing loosely coupled independent components into

systems.[1] This practice aims to bring about an equally wide-ranging degree of

benefits in both the short-term and the long-term for the software itself and for

organizations that sponsor such software. Software engineering practitioners regard

components as part of the starting platform for service-orientation. Components play

this role, for example, in web services, and more recently, in service-oriented

architectures (SOA), whereby a component is converted by the web service into

a service and subsequently inherits further characteristics beyond that of an ordinary

component. [1]

Figure 1: Component-based Software Engineering

other approaches. Software component technologies are just an emerging technology,

which is far from being matured and practically implemented. There is no existing

standards or guidelines in this new area, and we do not even have a unified definition

of the major item “component”. [7] However, we can say that a component has three

main features:

Current Component-Based Technologies
Amongst the various existing component-based technologies, three of them have

become somewhat standardize. They are as follows:

Select

Component 1

Component

Repository

Commercial Off-The-Shelf Components

Component 2 Software

System

Component n

Assemble

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Service-orientation
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Service-oriented_architecture

A Survey on Component-Based Software Development Technologies and et.al. 3

Common Object Request Broker Architecture (Corba)
Common Object Request Broker Architecture (CORBA) is an architecture and

specification for creating, distributing, and managing distributed program objects in a

network. It allows programs at different locations and developed by different vendors

to communicate in a network through an "interface broker." CORBA was developed

by a consortium of vendors through the Object Management Group (OMG), which

currently includes over 500 member companies. Both International Organization for

Standardization (ISO) and X/Open have sanctioned CORBA as the standard

architecture for distributed objects (which are also known as components). CORBA 3

is the latest level.

 The essential concept in CORBA is the Object Request Broker (ORB). ORB

support in a network of clients and servers on different computers means that a client

program (which may itself be an object) can request services from a server program or

object without having to understand where the server is in a distributed network or

what the interface to the server program looks like.[1][4]

 CORBA and Microsoft have agreed on a gateway approach so that a client object

developed with the Component Object Model will be able to communicate with a

CORBA server (and vice versa).It is just an emerging technology as compared to EJB

and COM/DOM and still needs extra modification.

Common Object Model (Com) and Distributed Com (DCOM)
COM is a framework for creating and using objects. COM, the Component Object

Model delivers on the long promised benefits of object technology: [10]code reuse

and off the shelf components. COM services are provided in a standard way, whether

those services are required within a single running process, within two different

processes on the same machine, or on two different processes across a network using

DCOM. COM is about choice; it provides the choice of the highest volume languages

and tools available, as well as the largest base of applications. COM also provides

choice in the area of security, as it provides a common interface (SSPI) where various

security providers can be plugged in. COM also provides choice of network

transport.[8]

 The COM specification has been complete since the end of 1992. Since then

additions have been made, such as DCOM, but applications that worked then still

work now. Unlike CORBA, COM provides the major elements necessary for a

technology to succeed:

1. A solid specification,

2. A single reference implementation which has been ported to multiple

platforms.

 COM is ubiquitous; it is found on millions of systems worldwide and is a key part

of most Microsoft software. Now that major systems Vendors such as HP, DEC and

SNI have announced plans to ship COM on their systems within the year, COM will

be used to create and use three-tier applications in many environments.[10]

 Also, Component Object Model is:

http://searchcio-midmarket.techtarget.com/definition/distributed
http://searchsoa.techtarget.com/definition/object
http://searchdatacenter.techtarget.com/definition/ISO
http://whatis.techtarget.com/definition/component
http://searchsoa.techtarget.com/definition/object
http://c2.com/cgi/wiki?ComponentObjectModel

4 Neha Prajapati

 Specification

 Philosophy of how software is constructed

 Binary Standard

 DCOM (Distributed Component Object Model) is a set of Microsoft concepts and

program interfaces in which client program object s can request services

from server program objects on other computers in a network. DCOM is based on

the Component Object Model (COM), which provides a set of interfaces allowing

clients and servers to communicate within the same computer (that is running

Windows 95 or a later version).[1][4]

 For example, you can create a page for a Web site that contains a script or program

that can be processed (before being sent to a requesting user) not on the Web site

server but on another, more specialized server in the network. Using DCOM

interfaces, the Web server site program (now acting as a client object) can forward a

Remote Procedure Call (RPC) to the specialized server object, which provides the

necessary processing and returns the result to the Web server site. It passes the result

on to the Web page viewer.

 DCOM can also work on a network within an enterprise or on other networks

besides the public Internet. It uses TCP/IP and Hypertext Transfer Protocol . DCOM

comes as part of the Windows operating systems. DCOM is or soon will be available

on all major UNIX platforms and on IBM's large server products. DCOM replaces

OLE Remote Automation.[10]

 DCOM is generally equivalent to the Common Object Request Broker

Architecture (CORBA) in terms of providing a set of distributed services. DCOM is

Microsoft's approach to a network-wide environment for program and data objects.

CORBA is sponsored by the rest of the information technology industry under the

auspices of the Object Management Group (OMG).COM/DOM technology is

supported by a wide range of strong development environments as compared to

CORBA and EJB. [1][4]

Enterprise Java Beans(EJB)
Enterprise JavaBeans (EJB) is an architecture for setting up program components,

written in the Java programming language, that run in the server parts of a computer

network that uses the client/server model. Enterprise JavaBeans (EJB) is an

architecture for setting up program components, written in the Java programming

language, that run in the server parts of a computer network that uses the client/server

model.[10]

 Enterprise JavaBeans is built on the JavaBeans technology for distributing program

components (which are called Beans, using the coffee metaphor) to clients in a

network. Enterprise JavaBeans offers enterprises the advantage of being able to

control change at the server rather than having to update each individual computer

with a client whenever a new program component is changed or added. EJB

components have the advantage of being reusable in multiple applications.

To deploy an EJB Bean or component, it must be part of a specific application, which

is called a container. [1][4]

http://searchenterprisedesktop.techtarget.com/definition/client
http://searchsoa.techtarget.com/definition/object
http://whatis.techtarget.com/definition/server
http://searchwinit.techtarget.com/definition/Component-Object-Model
http://searchsoa.techtarget.com/definition/object
http://searchsoa.techtarget.com/definition/Remote-Procedure-Call
http://searchnetworking.techtarget.com/definition/TCP-IP
http://searchwindevelopment.techtarget.com/definition/HTTP
http://searchsqlserver.techtarget.com/definition/CORBA
http://searchsoa.techtarget.com/definition/Object-Management-Group
http://searchsoa.techtarget.com/definition/JavaBeans
http://searchsoa.techtarget.com/definition/Bean
http://searchenterprisedesktop.techtarget.com/definition/client
http://whatis.techtarget.com/definition/deploy
http://searchsqlserver.techtarget.com/definition/container

A Survey on Component-Based Software Development Technologies and et.al. 5

 EJB is an emerging technology as compared to CORBA and COM/DOM.[10]

Quality Assurance For Component-Based Software Systems
Quality assurance for component-based software systems should be such that it

addresses the life cycle and its key activities to analyze the components and achieve

high quality component-based software systems. QA technologies for component-

based software systems are currently premature, as the specific characteristics of

component systems differ a lot from those of traditional systems in various ways. The

identification of the QA characteristics, along with the models, tools and metrics, are

all the need of the hour today. The main practices relating to Components and systems

in the model contain the following phases:

Component Requirement Analysis:-

In this phase the requirements of the user are discovered and understood. The

requirement of the component is documented accordingly. Validation of component

requirement is also done here.

Searching New Component:-

In the second phase required component is searched from the component repository or

outsourced from a third party. If it is not found then a new component is developed.

Develop New Component:-

If the required component is not in the repository then it is developed according to the

requirement. After the new component has been developed, it is added in the

component repository for future use.

Component Certification Process:-

Here, the components are audited to confirm its reliability and functionality. The

component should satisfy the user requirement. Only then can a component be

certified.

Component Customization:-

Components can also be modified as and when required. Sometimes, instead of

developing an entire new component, an already existing component can be

customized to fulfil a specific purpose. The customized component should be

compatible with the other components also.

System Architecture Design:-

At this stage, the design the design requirement of the system is collected and an

appropriate architecture is selected. Then the platform, programming languages, etc.

are determined.

6 Neha Prajapati

Testing on Each Component:-

Here each component is tested for its functionality individually and then by

integrating them. The defects in the system implementation are detected and

eliminated.

System Maintenance:-

This phase provides service and maintenance activities required to use the software

effectively. The designed system should be adaptive to changes in the environment

and market so that it can be modified from time to time.

Advantages and Disadvantages of the Technologies, One over the Other

After the survey certain conclusions have been drawn after comparing the above

mentioned technologies. COM/ DCOM in a way is better technology than CORBA

and EJB because they are the underdeveloped technologies while COM/ DCOM is

supported by various development environments.

 Also, COM/DCOM is platform dependent technology while CORBA and EJB are

platform independent technologies. Generally, on a multi-platform environment we

need an additional level of abstraction between language and the machine. Additional

level tells the specific machine how to run the code in its environment and brings

more code that the system has to run to handle a given set of instructions. So where

platform independency is a necessity only there the other technologies should be used.

COM/ DCOM is language independent, which adds an extra advantage to it.

Conclusion and Future Work
In this survey paper, we have reviewed existing component-based software

technologies and the features they adopt and also compare them on various

parameters. The following technologies have been described and compared:

 Sun Microsystems’s JavaBeans and Enterprise JavaBeans (EJB)

 Common Object Request Broker Architecture (CORBA)

 Component Object Model (COM)

 Distributed COM (DCOM)

 As far as the future work is concerned, various new features can be added to the

technologies and frameworks and applied to various softwares. Further some new

major activities in the component-based systems, technical and nontechnical issues

that need to be resolved for widespread adoption of this approach can be discussed.

[9]

References

[1] “Component-Based Software Engineering: Technologies, Development

Frameworks, and Quality Assurance Schemes”- Xia Cai, Michael R. Lyu,

Kam-Fai Wong Roy Ko The Chinese University of Hong Kong Hong

Kong Productivity Council, 2000.

A Survey on Component-Based Software Development Technologies and et.al. 7

[2] “A Generic Component Framework for System Modelling” by Braatz1,

Markus Klein1, and Martti Piirainen Technische University at Berlin,

Germany, 2004.

[3] “A Framework for Formal Component-Based Software Architecting” by

M.R.V. Chaudron, E.M. Eskenazi, A.V. Fioukov, D.K. Hammer

Department of Mathematics and computing Science, Technische

Universiteit Eindhoven,2001.

[4] “A Comparison of Distributed Object Technologies” by Carl-Fredrik

Sørensen, The Norwegian University of Science and Technology, 2014.

[5] “A Case Study Approach to Teaching Component Based Software

Engineering” by Allen Parrish and Brandon Dixon (Department of

Computer Science) David Hale and Joanne Hale (Area of Management

Information Systems),The University of Alabama The University of

Alabama,1999

[6] “A Comparison of Distributed Object Technologies” by Carl-Fredrik

Sørensen, The Norwegian University of Science and Technology, 2014.

[7] Component Software: Beyond Object-Oriented Programming. 2nd Edition

(2002) by C Szyperski

[8] “Software Reuse Architecture, Process, and Organization for Business

Success,” by M. L. Griss Proceedings of the Eighth Israeli Conference on

Computer Systems and Software Engineering, 1997.

[9] “New Age of Software Development: How Component-Based Software

Engineering Changes the Way of Software Development?” by Mikio

Aoyama

[10] “Component-based Development Process and Component Lifecycle” by

Ivica Crnkovic, Stig Larsson, Michel Chaudron, 2006

8 Neha Prajapati

