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Abstract 
 

The discovery of non-Euclidean geometry developed geometry dramatically. 
These new mathematical ideas were the basis for such concepts as the general 
relativity of a century ago and the physical theory of today. The idea of 
curvature is a mathematical idea. Plane hyperbolic geometry is the simplest 
example of a negatively curved space. Spherical geometry has even more 
practical applications. 

Riemann was the first geometer who really sorted out a concept in 
geometry. He made a general study of curvature of spaces in all dimensions. 
In two dimensions: 

Euclidean geometry is flat. It is curvature zero and any triangle angle sum 
is 180 degrees. 

The non-Euclidean geometry of Lobachevsky is negatively curved, and 
any triangle angle sum is smaller than 180 degrees. The geometry of the 
sphere is positively curved, and any triangle angle sum is bigger than 180 
degrees [1],[2],[3],[4],[5],[6],[7],[8]. 

I will show to combine Euclidean, Spherical, Minkowski, Hyperbolic 
geometries on four dimensional Trigonometric Algebra. Trigonometric 
Algebra is a four dimensional hypercomplex number theory. It is a 
noncommutative and associative algebra. It is an isomorphism with 
Quaternion algebra. My intuitive conception and observation of position and 
motion suggest that the position of geometry in space can only be specified 
relative to some other geometry, chosen as a reference. Likewise, the motion 
of geometry can only be specified relative to some reference geometry.  

 
 
Introduction 
The foundations of Euclidean geometry are five postulates concerning points and 
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lines. A point is an abstraction of the notion of a position in space. A line is an 
abstraction of the path of a light beam connecting two nearby points. Thus, any two 
points determine a unique line passing through them. This is Euclid's first postulate. 
The second postulate states that a line segment can be extended without limit in either 
direction. This is rather less intuitive and requires an imaginative conception of space 
as being infinite in extent. The third postulate states that, given any straight line 
segment, a circle can be drawn having the segment as radius and one endpoint as 
center, thereby recognizing the special importance of the circle and the use of straight-
edge and compass to construct planar figures. The fourth postulate states that all right 
angles are equal, thereby acknowledging our perception of perpendicularity and its 
uniformity. The fifth and final postulate states that if two lines are drawn in the plane 
to intersect a third line in such a way that the sum of the inner angles on one side is 
less than two right angles, then the two lines inevitably must intersect each other on 
that side if extended far enough. This postulate is equivalent to what is known as the 
parallel postulate, stating that, given a line and a point not on the line, there exists one 
and only one straight line in the same plane that passes through the point and never 
intersects the first line, no matter how far the lines are extended. The parallel postulate 
is somewhat contrary to our physical perception of distance perspective, where in fact 
two lines constructed to run parallel seem to converge in the far distance. While any 
geometric construction that does not exclusively rely on the five postulates of Euclid 
can be called non-Euclidean, the two basic non-Euclidean geometries, hyperbolic and 
elliptic, accept the first four postulates of Euclid, but use their own versions of the 
fifth. Incidentally, Euclidean geometry is sometimes called parabolic. The parallel 
postulate of Euclid has many implications, for example, that the sum of the angles of 
a triangle is 0180 . Not surprisingly, this and other implications do not hold in non-
Euclidean geometries. Classical, Newtonian mechanics assumes that the geometry of 
space is Euclidean. The development of Euclidean geometry essentially relies on our 
intuition that every line segment joining two points has a length associated with it. 
Length is measured as a multiple of some chosen unit [1],[2],[3],[4],[5],[6],[7]. 
 
 
Geometric Spaces 
EUCLIDEAN 3-SPACE, 3E  
 
Definition 1-1:  
 Euclidean 3-space, ( ){ }RxxxxxxxE ∈== 3213213 ,,:,,  
 
Definition 1-2: 
Dot Product; 
For 3, Eyx ∈ , 
  332211 yxyxyxyx ++=⋅  

  ( ) ( ) ( )2322212 xxxxxx ++==⋅  

  ( ) yxyxd E −=,  
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Proposition 1-3: 
  Ed is metric. 
 
Corollary 1-4: 
  Schwarz Inequality is yxyx ⋅≤⋅  
 
 Equality can be by including a multiple, ( )( )yx,cos θ ,in the inequality. 

  ( )( )yxyxyx ,cos θ⋅⋅=⋅  
 
 Where ( )yx,θ is the angle between x and y . 
 
Definition 1-5: 
Cross Product; 
For 3, Eyx ∈ , 

  
321

321

yyy
xxx
kji

yx =×  

 
Theorem 1-6:  
1 xyyx ×−=×  

2 ( )
321

321

321

zzz
yyy
xxx

zyx =⋅×  

 ( ) ( ) ( ) xzyyxzzyx ⋅×=⋅×=⋅×  

3 ( ) ( ) ( )zyxyzxzyx ⋅−⋅=××  

4 ( ) ( )
wyzy
wxzx

wzyx
⋅⋅
⋅⋅

=×⋅×  

 
Property 4 combined with 

  ( )( )yxyxyx ,cos θ⋅⋅=⋅ yields 

  ( )( )yxyxyx ,sin θ⋅⋅=× [1],[2],[3],[4],[5],[6],[7]. 
 
 
Euclidean Triangles In 3E  
Triangles in 3E  consist of 3 points, 3,, Ezyx ∈ and the geodesics connecting points. 
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Geodesics are “straight lines” between points. In 3E , geodesics are straight lines. 
 

SIDES [ ]yx,  [ ]zy,  [ ]xz,  
LENGTHS ( )yxda E ,=  ( )zydb E ,=  ( )xzdc E ,=  
ANGLES A  B C  
GEODESICS [ ] 3,0: Eaf → [ ] 3,0: Ebg → [ ] 3,0: Ech →  

 

 
 

Graphic 1: Euclidean triangle. 
 
 
Euclidean Law of Sines 
Euclidean Law of Sines 

  
C

c
B

b
A

a
sinsinsin

==  

 
Euclidean Law of Cosines 
Euclidean Law of Cosines 

  
bc

acbA
2

cos
222 −+

=  

 
Spherical 2-Space, 2S  
Defition 1-1: 
Unit Sphere, 2S  

  { }1:32 =∈= xExS  

  ( )( ) ( )( )yxyxyxyx ,cos,cos θθ ==⋅ and  
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  ( )( ) ( )( )yxyxyxyx ,sin,sin θθ ==×  
 
 On 2S , the geodesic between two points is the shortest are of the great circle 
passing through the points. This gives distance between two points on the sphere to be 

  ( ) ( ) ( )yxyxyxdS ⋅== −1cos,, θ  
 
 Then  

  ( ) π≤≤ yxdS ,0  

  ( ) xyyxdS −=⇔= π, is antipodal 
 
Proposition 2-2: 
  Sd is metric [1],[2],[3],[4],[5],[6],[7]. 
 
Spherical Triangles in 2S  
Triangles in 2S consist 3 points, 2,, Szyx ∈ and the geodesics connecting the points. 
 

SIDES [ ]yx,  [ ]zy,  [ ]xz,  
LENGTHS ( )yxa ,θ=  ( )zyb ,θ=  ( )xzc ,θ=  
ANGLES A  B C  
GEODESICS [ ] 2,0: Saf → [ ] 2,0: Sbg → [ ] 2,0: Sch →  

 
( ) Axzzy −=×× πθ ,  ( ) Azxzy =×× ,θ  
( ) Byxxz −=×× πθ ,  ( ) Bxyxz =×× ,θ  
( ) Czyyx −=×× πθ , ( ) Cyzyx =×× ,θ

 

 
 

Graphic 2: Spherical triangle. 
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Spherical Law of Sines 
  ( ) ( ) ( )( ) ( )( ) ( )( )zxzyxzzyzxzyxzzy ⋅×=⋅×−⋅×=×××  

  ( ) ( ) ( )( )zxzyxzzy ⋅×=×××  

  ( ) ( )( ) zxzyxzzyxzzy ⋅×=×××× ,sinθ  

  ( ) ( )( )xzyAcb ⋅×=−πsinsinsin  

  ( )( )xzyAcb ⋅×=sinsinsin  
 
 Similarly  
  ( ) ( ) ( )( )xyxzyxxz ⋅×=×××  

  ( ) ( ) ( )( )yzyxzyyx ⋅×=×××  
 
 Taking the norm of the reamining two equalities, noticing the right hand sides of 
each are equal, yields 
  CbaBacAcb sinsinsinsinsinsinsinsinsin ==  
 
Spherical Law of Sines 
Spherical Law of Sines 

  
C
c

B
b

A
a

sin
sin

sin
sin

sin
sin

==  

 
Spherical Law of Cosines 
Spherical Law of Cosines 

  
cb

cbaA
sinsin

coscoscoscos −
=  

 
Minkowski 3- Space, 3M  
Definition 3-1:  
Minkowski 3-space; 

  ( ){ }3213 ,,: xxxxxM ==  
 
Definition 3-2: 
Boxdot Product; 
For 3, Myx ∈ , 

  332211 yxyxyxyx −+=∇  

  2xxx =∇  
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  ( ) yxyxdM −=,  

  3Mx∈ is called time-like if 0<∇xx  

  3Mx∈ is called space-like if 0>∇xx  

  3Mx∈ is called light-like if 0=∇xx  
 
 We will be mainly concerned with time-like vectors for the remainder of the time. 
 
Proposition 3-3: 
  Md is metric. 
 
Corolarly 3-4: 
For x  and y timelike vectors, 

  yxyx ≥∇  
 
 Equality can be attained by including a multiple, ( )( )yx,cosh θ ,in the equality. 

  ( )( )yxyxyx ,cosh θ=∇  
 
where ( )yx,θ is the hyperbolic angle between x and y . 
 
Definition 3-5: 
Boxcroos Product; 

For 3, Myx ∈ , 

  
321

321

yyy
xxx
kji

yx =Δ  

 
Theorem 3-6: 
Properties of Vectors in Minkowski 3-Space 

1. If yx, are positive time-like vectors, then yxΔ is space-like. 
2. If vu, are space-like vectors, then the following are equivalent: 

a. The vectros u and v satisfy the inequality 
  vuvu <∇  

b. vuΔ is the time-like. 
c. The vector subspace V spanned by u and v is space-like.Every nonzero 

vector is space-like. 
 

3. If vu, are space-like vectors spaning a space-like vector space,then  
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  ( )( )vuvuvu ,cos. θ=∇  

  ( )( )vuvuvu ,sin. θ=Δ  

 where  ( )uuu ∇−=2  

 
Theorem 3-7: 
Properties of ∇and Δ  

1. xyyx Δ−=Δ  

2. ( )
321

321

321

zzz
yyy
xxx

zyx =∇Δ  

3. ( ) ( ) ( )( )zyxyzxzyx ∇−∇−=ΔΔ  

4. ( ) ( )
wyzy
wxzx

wzyx
∇∇
∇∇

−=Δ∇Δ  

 
 For x and y time-like vectors, property 4 combined with 

  ( )( )yxyxyx ,cosh. θ=∇ yields 

  ( )( )yxyxyx ,sinh. θ−=× [1],[2],[3],[4],[5],[6],[7]. 
 
Hyperbolic 2- Space, 2H  
Definition 4-1 
Unit hyperboloid, 2H ; 

  { }1:32 −=∇∈= xxxMxH  

  ( )( ) ( )( )yxyxyxyx ,cosh,cosh. θθ −==∇ and  

  ( )( ) ( )( )yxyxyxyx ,sinh,sinh. θθ ==Δ  
 
 On 2H ; the geodesic is the branch of a hyperbola passing through the points. 
 This gives the distance between two points on the hyperboloid to be 

  ( ) ( ) ( )yxyxyxd H ∇−== −1cosh,, θ  

  ( )yxd H ,0 ≤  
 
Proposition 4-2 
  Hd is a metric [1],[2],[3],[4],[5],[6],[7]. 
 
Hyperbolic Triangles In 2H  
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Triangles in 2H consist 3 points, 2,, Hzyx ∈ and the geodesics connecting the points. 
 

SIDES [ ]yx,  [ ]zy,  [ ]xz,  
LENGTHS ( )yxa ,θ=  ( )zyb ,θ=  ( )xzc ,θ=  
ANGLES A  B  C  
GEODESICS [ ] 2,0: Haf → [ ] 2,0: Hbg → [ ] 2,0: Hch →  

 
( ) Axzzy −=ΔΔ πθ , ( ) Azxzy =ΔΔ ,θ  
( ) Byxxz −=ΔΔ πθ , ( ) Bxyxz =ΔΔ ,θ  
( ) Czyyx −=ΔΔ πθ , ( ) Cyzyx =ΔΔ ,θ

 

 
 

Graphic 3: Hyperbolic triangle. 
 
 
Hyperbolic Law Of Sines 
  ( ) ( ) ( )( ) ( )( )( ) ( )( )zxzyxzzyzxzyxzzy ∇Δ−=∇Δ−∇Δ−=ΔΔΔ  

  ( ) ( ) ( )( )zxzyxzzy ∇Δ−=ΔΔΔ  

  ( ) ( )( ) zxzyxzzyxzzy ∇Δ−=ΔΔΔΔ ,sin. θ  

  ( ) ( )( )( )zzxzyAcb ∇−∇Δ=−πsinsinhsinh  

  ( )( )xzyAcb ∇Δ=sinsinhsinh  
 
 Similarly  
  ( ) ( ) ( )( )xyxzyxxz ∇Δ−=ΔΔΔ  
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  ( ) ( ) ( )( )yzyxzyyx ∇Δ−=ΔΔΔ  

 
 Taking the norm of the reamining two equalities, noticing the right hand sides of 
each are equal, yields 
  CbaBacAcb sinsinhsinhsinsinhsinhsinsinhsinh ==  
 
 
Hyperbolic Law of Sines 
Hyperbolic Law of Sines 

  
C
c

B
b

A
a

sin
sinh

sin
sinh

sin
sinh

==  

 
Hyperbolic Law of Cosines 
Hyperbolic Law of Cosines 

  
cb

acbA
sinhsinh

coshcoshcoshcos −
=  

 
 
Trigonometric Algebras 
Definition 2-1 
Let  
 Euclidean Law of Sines is 

  
C

c
B

b
A

a
sinsinsin

==  

 
 Spherical Law of Sines is 

  
C
c

B
b

A
a

sin
sin

sin
sin

sin
sin

==  

 
 Hyperbolic Law of Sines is 

  
C
c

B
b

A
a

sin
sinh

sin
sinh

sin
sinh

==  

 
 G is a trigonometric space.  
 A  is an angle and its length is a  
 
 The form of a trigonometry number is ( ) ( ) ( ) ( ) 321 sinhsinsin eaeaeaA +++=Ψ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }RaaaAGeaeaeaA ∈∈+++=Ψ= sinh,sin,,sinsinhsinsin 321ξ  
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( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−===

=−===∈+++=Ψ
=

1,,

,,1sinhsinsin

321132213

321
2

3
2

2
2

1321

eeeeeeeee

eeeeeeGeaeaeaA
ξ  

B  is an angle and its length is b  
 
 The form of a trigonometry number is ( ) ( ) ( ) ( ) 321 sinhsinsin ebebebB +++=Ψ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }RbbbBGebebebB ∈∈+++=Ψ= sinh,sin,,sinsinhsinsin 321ξ  

( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−===

=−===∈+++=Ψ
=

1,,

,,1sinhsinsin

321132213

321
2

3
2

2
2

1321

eeeeeeeee

eeeeeeGebebebB
ξ  

C  is an angle and its length is c  
 
 The form of a trigonometry number is ( ) ( ) ( ) ( ) 321 sinhsinsin ecececC +++=Ψ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }RcccCGecececC ∈∈+++=Ψ= sinh,sin,,sinsinhsinsin 321ξ  

( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−===

=−===∈+++=Ψ
=

1,,

,,1sinhsinsin

321132213

321
2

3
2

2
2

1321

eeeeeeeee

eeeeeeGecececC
ξ  

 
 
Trigonometric Algebras Operators 
Product 
Let 

( ) ( ) ( ) ( ) 321 sinhsinsin eaeaeaA +++=Ψ  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }RaaaAGeaeaeaA ∈∈+++=Ψ= sinh,sin,,sinsinhsinsin 321ξ  

( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−===

=−===∈+++=Ψ
=

1,,

,,1sinhsinsin

321132213

321
2

3
2

2
2

1321

eeeeeeeee

eeeeeeGeaeaeaA
ξ  

( ) ( ) ( ) ( ) 3211 sinhsinsin eaeaeaA +++=Ψ  
( ) ( ) ( ) ( ) 3212 sinhsinsin ebebebB +++=Ψ  

 
 
Multiplication is generally noncommutative 1221 Ψ×Ψ≠Ψ×Ψ  
 

21 Ψ×Ψ 1e  2e  3e  

1e  1−  3e  2e−
1 2e  3e− 1−  1e  

3e  2e  1e− 1−  
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Conjugate 
The conjugate of ( ) ( ) ( ) ( ) 321 sinhsinsin eaeaeaA +++=Ψ  is  

( ) ( ) ( ) ( ) 321 sinhsinsin eaeaeaA −−−=Ψ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }RaaaAGeaeaeaA ∈∈+++=Ψ= sinh,sin,,sinsinhsinsin 321ξ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }RaaaAGeaeaeaA ∈−−−∈−−−=Ψ= sinh,sin,,sinsinhsinsin 321ξ   
 
Magnitude 

The magnitude of ( ) ( ) ( ) ( ) 321 sinhsinsin eaeaeaA +++=Ψ  is  

( ) ( ) ( ) ( )2222 sinhsinsin aaaA +++=Ψ  
 
Multiplicative Inverse 
The multiplicative inverse of ( ) ( ) ( ) ( ) 321 sinhsinsin eaeaeaA +++=Ψ  is  

Ψ
=Ψ− 11  , 0≠Ψ and 

ΨΨ
Ψ

=Ψ−1  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )321321

3211

sinhsinsinsinhsinsin
sinhsinsin

eaeaeaAeaeaeaA
eaeaeaA

−−−+++
−−−

=Ψ−  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2222

3211

sinhsinsin
sinhsinsin

aaaA
eaeaeaA

+++

−−−
=Ψ−   

 
Division 
Let  

( ) ( ) ( ) ( ) 3211 sinhsinsin eaeaeaA +++=Ψ  

( ) ( ) ( ) ( ) 3212 sinhsinsin ebebebB +++=Ψ and 02 ≠Ψ  

( ) ( ) ( ) ( ) 321
2

1 sinhsinsin ecececC +++=
Ψ
Ψ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }RcccCGecececC ∈∈+++=Ψ= sinh,sin,,sinsinhsinsin 321ξ  

The conjugates of ( ) ( ) ( ) ( ) 3211 sinhsinsin eaeaeaA +++=Ψ  and 
( ) ( ) ( ) ( ) 3212 sinhsinsin ebebebB +++=Ψ  are  

( ) ( ) ( ) ( ) 3211 sinhsinsin eaeaeaA −−−=Ψ  and
( ) ( ) ( ) ( ) 3212 sinhsinsin ebebebB −−−=Ψ   

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )321321

321321

2

1

sinhsinsinsinhsinsin
sinhsinsinsinhsinsin

ebebebBebebebB
ebebebBeaeaeaA

−−−+++
−−−+++

=
Ψ
Ψ  
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( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )2222

321321

2

1

sinhsinsin
sinhsinsinsinhsinsin

bbbB
ebebebBeaeaeaA

+++

−−−+++
=

Ψ
Ψ   

 
Polar Notation 
I developed these polar forms. 
Let  

( ) ( ) ( ) ( ) 321 sinhsinsin eaeaeaA +++=Ψ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }RaaaAGeaeaeaA ∈∈+++=Ψ= sinh,sin,,sinsinhsinsin 321ξ  

The magnitude of ( ) ( ) ( ) ( ) 321 sinhsinsin eaeaeaA +++=Ψ  is 

( ) ( ) ( ) ( )2222 sinhsinsin aaaA +++=Ψ  

( ) { }kkkTArg πθπθπθ 2,2,2 321 +++=  and 
{ }R∈<≤<≤<≤= 321

0
3

0
2

0
1 ,,|3600,3600,3600 θθθθθθθ  

The radius set is 

{ }RrrraAraAraArr ∈+=+=+== 321
22

3
22

2
22

1 ,,|sinhsin,sinsin,sin  

The polar notation is ( ) ( ) ( )333322221111 sincossincossincos θθθθθθ ererer +++=Ψ  

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈
+

=
+

=
+

=
=

R
aA

A

aA

A

aA

A

321

223222221

cos,cos,cos

|
sinhsin

sincos,
sinsin

sincos,
sin

sincos
cos

θθθ

θθθ
θ

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

∈
+

=
+

=
+

=
=

R
aA

a

aA

a

aA

a

321

223222221

sin,sin,sin

|
sinhsin

sinhsin,
sinsin

sinsin,
sin

sin
sin

θθθ

θθθ
θ  

 
 The polar notation is  

  ( ) ( ) ( )333322221111 sincossincossincos θθθθθθ ererer +++=Ψ  
 
 Its conjugate is  

  ( ) ( ) ( )333322221111 sincossincossincos θθθθθθ ererer −−−=Ψ  
 
Exponential Form 
I developed these exponential forms. 
Let  

( ) { }kkkArg πθπθπθ 2,2,2 321 +++=Ψ  and 
{ }R∈<≤<≤<≤= 321

0
3

0
2

0
1 ,,|3600,3600,3600 θθθθθθθ , 
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The radius set is 

{ }RrrraAraAraArr ∈+=+=+== 321
22

3
22

2
22

1 ,,|sinhsin,sinsin,sin  
 
The polar form is ( ) ( ) ( )333322221111 sincossincossincos θθθθθθ ererer +++=Ψ  
The exponential form is 

( )( )( )333222111 sincossincossincos332211 θθθθθθθθθ eeee eee +++=++

 
 
Its conjugate is  

( )( )( )333222111 sincossincossincos332211 θθθθθθθθθ eeee eee −−−=−−−
 

 
Power Form 
I developed these power forms. 
Let 

( ) { }kkkArg πθπθπθ 2,2,2 321 +++=Ψ  and 
{ }R∈<≤<≤<≤= 321

0
3

0
2

0
1 ,,|3600,3600,3600 θθθθθθθ , 

 
The radius set is 

{ }RrrraAraAraArr ∈+=+=+== 321
22

3
22

2
22

1 ,,|sinhsin,sinsin,sin  
The polar form is ( ) ( ) ( )333322221111 sincossincossincos θθθθθθ ererer +++=Ψ  
The power form is from degree n th power and Zn∈  

( ) ( ) ( )333322221111 sincossincossincos θθθθθθ nenrnenrnenr nnnn +++=Ψ  
 
Root Form 
I developed these root forms. 
Let 

( ) { }kkkArg πθπθπθ 2,2,2 321 +++=Ψ  and 
{ }R∈<≤<≤<≤= 321

0
3

0
2

0
1 ,,|3600,3600,3600 θθθθθθθ , 

 
The radius set is 

{ }RrrraAraAraArr ∈+=+=+== 321
22

3
22

2
22

1 ,,|sinhsin,sinsin,sin  
 
The root form is from degree n th root, 1,...,2,1,0 −= nk  and Znk ∈,  

⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

=Ψ
n

ke
n

kr
n

ke
n

kr
n

ke
n

kr nnn
k

πθπθπθπθπθπθ 2sin2cos2sin2cos2sin2cos 3
3

3
3

2
2

2
2

1
1

1
1  

 
Its roots are { }110 ,...,, −ΨΨΨ=Ψ nk  
Addition 
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( ) ( ) ( ) ( ) 3211 sinhsinsin eaeaeaA +++=Ψ  

( ) ( ) ( ) ( ) 3212 sinhsinsin ebebebB +++=Ψ  

( ) ( ) ( ) ( ) 32121 sinhsinhsinsinsinsin ebaebaebaBA +++++++=Ψ+Ψ  

( ) ( ) ( ) ( ) 32121 sinhsinsin edededD +++=Ψ+Ψ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }RdddDGedededD ∈∈+++=Ψ= sinh,sin,,sinsinhsinsin 321ξ
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