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Abstract
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I. INTRODUCTION

There are many researchers who have worked on the fixed point theory of contractive
mappings (see, for example, [1, 2]). In [2], The police Mathematician Banach, S.
(1922) demonstrated a crucial result of contraction mapping, which became known as
the Banach contraction principle. Many writers have improved, expanded, and
generalized the results of. Banach, S. [2] in many directions.

Recently, in 2011, Hussein and Shah [5] introduced the concept of cone b-metric
spaces as a generalization of b-metric spaces and cone metric spaces. They
established some topological properties in such spaces and improved some recent
results about KKM mappings in the setting of a cone b-metric space. In 2013, Shi and
Xu [6] proved common fixed point theorems for two weakly compatible self-
mappings in cone b-metric spaces. In 2013, Huang and Xu [7], presented some new
examples in cone b-metric spaces and proved some fixed point theorems of
contractive mappings without the assumption of normality in cone b-metric spaces. In
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[8], George, R. and. Fisher, B. (2013) obtained a common fixed point theorem of
Taskovic type for three mappings in non-normal cone b-metric spaces, which will
extend and generalize recent results of Huang and Xu [7]. In 2014, Tiwari, S.K. et al.
[9], generalized and proved common fixed point theorems for self-mapping satisfying
a general contractive condition on complete cone b-metric spaces of the results [6]. In
cone b-metric spaces, [10] extended [5] and proved common fixed point theorems. In
the sequel, Tiwari, S.K. and Kurre, R.[11], a generalized fixed point theory of cone b-
metric spaces. In 2019, Kurre, R. [12] generalized the results of Saluja, G.S. [3] and
Kumar, P. and Ansari, K. Z. [4].

The purpose of this article is to generalize and extend the fixed point theorem of
generalized contraction mapping in cone b-metric space. Our results extend and
improve the results of Kurre, R. [12].

Il. PRELIMINARY NOTES

First, we recall the definition of cone metric spaces and some properties of theirs [13].
Definition: 2.1 [10]. Let £ be a real Banach space and P a subset of £. Then P is
called a cone if and only if:

1.  Pisclosed, non-empty and P # {0};

2. a,beR,a,b>0x,yeP = axtbye€ P,

3. xePand-xeP=>x=0.

For given a cone P c E, we define a Partial ordering < on E with respect to P by x <
y ifand only if y - x € P. We shall write X «< y to denote x < y but x # y to denote
y - x € p°, where p° stands for the interior of P.

The cone P is called normal if there is a number K > 0 such that forall x,y € E,0 <
x <y implies ||x|]| < K]||y|l.The least positive number K satisfying the above is
called the normal constant of P. The least positive number satisfying the above is
called the normal constant P.

In the following, we always suppose that £ is a Banach space, P is a cone in E with
int P # @ and < is a partial ordering with respect to P.

Definition 2.2[13]: Let X be a non — empty set. Suppose the mapping d: X X X — E
satisfies the following condition:

1. 0<d(x,y)forall x,ye Xandd (x,y) =0ifand only if x = »,

2. dx,y)=d(y,x)forall x,y € X,

3. dxy)<d(x,z)+d(z,y)forallx,y,z € X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.
Example 2.3 [13]: Let E = R%2 P = {(x,y) € E:x,y > 0}, X=Rand d: X X

X — E, on defined by d(x,y) = (| x —y |, |x — y|) where o< > 0 is a constant.
Then (X, d) is a cone metric space.
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Example: 2.4. Let E= [}, P = {{xn}n >1€E:x,20,forall n} (X,d) a metric
space and d: X x X — E, defined by d(x,y) = {d(;;y)} n = 1.Then (X,d) is a cone
metric space.

Definition 2.5[5]: Let X be a non — empty set. Suppose the mappingd: X XX — E
satisfies the following condition:

1. 6 <d(xy)forallx,y € Xwithx # yandd (x,y) =0ifand only if x = y;
2. d(x,y)=d(y,x)forall x, y € X;

3. d(xy) < s[d(x,z)+ d(z,y)] forallx,y,ze X.

Then d is called a cone b- metric on X, and the pair (X, d) is called a cone b- metric
space. It is obvious that cone b- metric spaces generalize b-metric spaces and cone
metric spaces.

Example 2.5 [7]: Let E = R%2, P = {(x,y) € E:x,y > 0}, X=R and d: X x
X — E, on defined by d(x,y) = (| x — y P, |[x — y|?) where « > 0 and p > lare
two constant. Then (X, d) is a cone b- metric space but not a cone metric spaces. In
fact, we only need to prove (iii) in Definition 2.5 as follows:
Letx,y,z€ X.Setu=x—z,v=2z—y,50x —y = u+ v. from the inequality
(a+ b)P < (2max{a,b})P < 2P(aP + bP) foralla,b = 0,
We have
lx —y|P = |u+v[?
< (lul + [vDP
< (Jul? + [v|?)
=2P(|x —zIP + |z — yIP),

This implies that d (x,y) < s[d (x,z) + d (z,y)] with s = 2P > 1. But |[x — y|?
=|x — z|? + |z — y|P, is impossible for all x > z > y. Indeed, taking account of the
inequality (a + b)? > aP + bP forall a,b > 0,we arrive at
lx —ylP=|lu+vP < (u+v)P
>uPl +vP = (x —2)P+(z — 2)P
= |x—2z[P +|z—yl|?, for all x >z > y. thus, (iii) definition 2.5 is not satisfied,
i.e (X,d) is not a cone metric space. limn - o xn = xorxn - x,(n - ).

Definition 2.6 [5]:Let (Q, d) be a cone b- metric space, ¢ € Q and {{,,} a sequence in

Q. Then,

1. {&,} converges to whenever for every ¢ € E with 8 < c, there is a natural
number N such that d (&,,,§ < c foralln = N. We denote this by Tlll_r& & =

§oré, =§,(n > ).

2. {&,}is said to be a Cauchy sequence if for every ¢ € E with 0K c, there is a
natural number N such that d(§,,,&,,) < cforalln,m > N.

3. (Q,4d)is called a complete cone metric space if every Cauchy sequence in X is
Convergent.
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Lemma 2.7[12]

1. Let P be a cone and {a,} be a sequence in E. Ifc € intPand 6§ < a, — 6 as
(n = 00), then there exist N such that for all n > N, we have a,, <c.

2. Letx,y,zeE,ifx<yandy < zthenx < z.

3. LetPbeaconeanda < b + c foreachc € intP, thena < b.

Lemma 2.8[5] Let P be a cone and 8 < u < c for each ¢ € intP, thenu = 6.

Lemma 2.9[14] Let P be a cone. Ifu € P and u < Ku for some 0 < k < 1thenu =
6.

I11. Main Results

In this section we shall extend and generalize the results of R. Kurre, et al.[12] and
obtain some common fixed point theorems of generalized contraction mappings in the
framework of cone b-metric spaces.

Theorem 3.1: Let (Q, d) be a complete cone b- metric space with the coefficient s >
1. Suppose F,G:Q — Q be a self mappings satisfying the generalized contraction

mapping
d(F(8), Gg(9)) < Md(E, @) + Ad(§, Fo(8)) + Asd (¢, Gg(9))
+A4[d (&, Gp(9)) + d(¢, Fy ()] (3.1.1)

for all £, ¢ € Q, where A;,2;,23,A, € [0,1)are constants such that A; + A, + A3 +
25, < 1.
Then F and G have a unique common fixed point £* € Q. And for any x € X, iterative

sequence {F,****x} and {Gz****x} converges to the common fixed point.

Proof: Let &, be an arbitrary point in Q. We define the iterative sequence {¢,,} and
{&an+1} DY

Eake1 = Faor = 2. (3.1.2)
and
Exkrz = Gpéarrr = Gg2"xg (3.1.3)

Then from (3.1.1), we have
d(€2k+1,€2k) = d(FaEZk,Gﬁka—D
< Md &k $ok—1) T 22d (Eap, Far) + A3d ($2k—1, Gpéak—-1)
+ g [d(Ean, Gp&ar—1) + d(E—1, Fuai)].
< Md(Ezr Sar-1) + A2d (ks Eair1) + A3d (§2k—1, E2k)
+ A [d €2k Ear) + A (a1, S2k41)]-
< Md(Earr Sak—-1) + A2d (ks Eaier1) + A3d (§2k—1, E2k)
+ A d($2k-1, S2k41)-
< Md(Er Ear—-1) + A2d (ks Eapr1) + A3d(Eap—1, E2x) + 5A4d (ks E21-1)
+524d($21) $21041)
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< (A1 + 23 +5A)d 6ok, S2k—1) + Az + 5A4)d &2k $2ke41)
This implies that

(A1 + A3 + sA,)

d(&zr1.62k) < d &2k €2-1)

1— (A, +s7y)

< rd(&apr Eak—1)s evnnnn. (3.1.4)

(}L1+}L3+S}\4) . . R
where r = T Owtohe) < 1.AsA; + A, + A5 + 24, < 1.Similarly, we obtain
d(Ezks1,E21) < 1A, E2k—2) ... (3.1.5)
Using (3.1.3) in (3.1.2), we get
d(Eaks1,82k) < T2 (Eokm1,Eakm2) oo (3.1.6)
Continuing this process, we obtain
d(Erir,Ear) < TA(EL, &) oo (3.1.7)

Forany k > 1,p = 1, we have
d(52k152k+2p) < s[d(€zr Eak41) T A(C2kr1s E242p)]
< 5d (& E2k+1) T 52d(Eorr1s E2ka2) + 57 d(Eokazs E2k43)
T +52p_1d(52k+2p—2'EZk+2p—1) + Szp_ld(€2k+2p—1' $2k+2p)
<sr2kd(&y, &) + s2rHrld (&, &) + s3rP2d (&, &)
Forrinn +s2Pr2kt2p=1g(g £).
=sr2K[1 4+ (s1) + (s7)2 + (57)3. s e e +(sT)?P7 YA (&1, &p)
<

2k
<>— d(§1,%0)-
2m
Let 0 < c be given. Notice that % d(é1,¢9) = 0asm — oo for any p. Making full
use of lemma 2.7(i), we find m, € N such that

sr2k
-~ d(é1,¢&) < c, foreach k > k.

k
Thus, d(&2k, $2k42p) < % d(é1,¢&0) < c, forall k = 1,p > 1. So, by lemma 2.7(ii)
{&,1} is a Cauchy sequence in (£, d). Since (£, d) is a complete cone b- metric space,
there exist £* € X such that &,, — £ ask — oo Taken ky € N such that d(&y, §¥) <

r=s0eta)) forall & > ko.Hence

S(1+A1+4)
dA(F§", &) < s[d(Fp87, Féax) + d(Fpéar, €7)]
= sd(F,¢", Fpéor) + sd(Fy €24, €7)
= sd(Fy&", Fpéor) + 5d(§ap41,€7)
< s[Ad(E7, Ex) + A d (€7, Fy &)+ A3sd (&g k)
A {d(E", Féar) + d(€an Fa€™)} ] +5d(§2k41,€7)-
< S[Ad (€€ 2x) +22d(§7, F 8+ }\Bd(€2k,€2k+1)
FA{d(E", Eapr1) + d(ons Fr €7)3 ] +5d (€ 2041, €7)-
< S[Md(E% &) + A d (%, Fy €+ sha{d (&2, 6) + d(E7, Eppern)}
A {d(E", Eapr1) + 5A (&2, € + 5A(E7, FpE)} ] +5d(Epern, €7).
= S[Ad (€7, k) + Ad (7, F$7)+ 5}\3{d(€2k,€*) +d (&% Sans1)}
A {d (€7, Sonrr) + 5A(62k, §7) +5d(§7, F8T)} ] +sd(§ak41, €7)
This implies that

d(Fz&7,€") < sy +sA)d(Fp€™,€7) + s(Aq + A3 + sA,)d (21, €7)
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+5(1 4+ sA3 + A4) d(§7, $ak41)-
1-s(Ay + sA)d(F¢", &) < s\ + sA3 + sA,)d (&, €) +s(1 +sA5 +
S(A1+SAz+5Ay) }\4) d(f*' Elecg-ll-l-)s)xg,+?x4)
S0, d(Fu§",§") < 70y A d) *+ o 482k dane) < c for each
k > ko. Then by lemma 2.8 we deduce that d(F,¢%,¢*) = 0,i.e., F,&" = &".That is
¢ is a fixed point of F. Similarly, we can prove that, Gg¢* = &*. That is £* is a fixed
point of G. Therefore, F,&* = &* = Gg&™. Hence, &* is a common fixed point of
FandG.
Now to prove its uniqueness, If £** is another common fixed point of F and G such
that FE™ = & = G&™, then by the given condition (3.1.1), we have
d(§,§) = d(F8",Ggs™ ™)
< Ld(EET) +d(E FaE) + Xad (87, GpE™)
+24 [d(§7,GpE™) + d(§™, Fy )]
< (A4 +2s2)(E7,67).

By lemma 2.9, &* = &**.Therefore, £* is unique common fixed point of F and G.This
completes the proof of the theorem.
From theorem 3.1, we obtain the following results as corollaries.

Corollary 3.2: Let (Q,d) be a complete cone b- metric space with the coefficient s >

1. Suppose F, G: Q — Q be a self mappings satisfying contractive map
d(F.(§),Gp(¢)) < 2d(§, ¢)

for all £, ¢ € Q, where 2 € [0,1/s] is a constant.Then Then F and G have a unique

common fixed point §* € Q. And for any x € X, iterative sequence {F,****x} and

{Gg***x} converges to the common fixed point.

Proof: The proof of the corollary 3.2 is immediately follows from theorem 3.1 by
taking A, = 13 = 1, = 0 and 1; = A. This completes the proof.

Corollary 3.3: Let (Q, d) be a complete cone b- metric space with the coefficient s >
1. Suppose F,G:Q — Q be a self mappings satisfying the generalized Contraction
map:

d(F(8),Gp(d)) < Md(§,E(D) + d(, Gp(#))]
for all £, € Q, where 1 € [0,1/2s] is a constant. Then F and G have a unique
common fixed point &* € Q. And for any x € X, iterative sequence {F,**'x} and

{Gg¥*?x} converges to the common fixed point.

Proof: The proof of the corollary 3.3 is immediately follows from theorem 3.1 by
taking A, = 1, = 0 and 1, = A3 = A. This completes the proof.

Corollary 3.4: Let (Q,d) be a complete cone b- metric space with the coefficient s >
1. Suppose F,G:Q — Q be a self mappings satisfying the generalized Contraction
map:
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d(F(§), Gp(®)) < Ald (£ Gg(9)) + d(, F ()]
for all ¢, € Q, where 1 € [0,1/2s] is a constant. Then F and G have a unique
common fixed point * € Q. And for any x € X, iterative sequence {F,**'x} and
{G5****x} converges to the common fixed point.

Proof: The proof of the corollary 3.4 is immediately follows from theorem 3.1 by
taking A, = 1, = 13 = 0 and A1, = A.This completes the proof.

Theorem 3.5: Let (£, d) be a complete cone b- metric space with the coefficient s >
1. Suppose F,G:Q — Q be any two self mappings satisfying the generalized
contraction mapping

d(F(§),Gp(¢)) < M[d(E, $) +d(§ Fo(8)) + d(, Gp(9)) ]

+2[d(E Ga(P) + d( Ex ()]s v (3.5.1)
forall ¢, ¢ € Q, where A4, 2,, € [0,1)are constants such that 2(A; + A,s) < 1. Then
Then F and G have a unique common fixed point £* € Q. And for any & € Q,iterative

sequence {F,*"**&} and {Gz*'**¢} converges to the common fixed point.

Proof: Let &, be an arbitrary point in Q. We define the iterative sequence {¢,,,} and
{&2n+1} DY

€Zl+1 = Fa&Zl = FQZIXO ......... (352)
and
$2142 = Gpéarer = GgZZon ...... (3.5.3)

Puté =&, and ¢ = &,;_4 in (3.5.1) we get
d(fzz+1,szzt) = d(Faka,Gﬁka—l)
< M[d(&ap &a—1) + d(Eap Féa) + d(fzz—l' G,szz—l)]
+7\2[(d(52b 65521—1) + d($21-1, F2é20)]

< M[d(€a§21-1) + d(€a1 $2141) + d(€21-1, §20)]
A [(d (€21 §20) + d(§21-1, $214 )]

=M[d (€21 $21-1) + d(€ar 2141) + d (2121, $20)]
+52,[d(§21-1,§20) + d (€21 €2141)]

< (2N +5A5)d (&1, E01-1) + (A + 5A)d (€21 E2141)
This implies that

(2A; + +s1,)

d(&41,621) < 1= (g +57y) A€z, €21-1)
< hd(&x0,&0im1)s oo (3.5.4)
where h = % < 1.As 2(A; +A,5) < 1, we obtain that h < 1. Similarly, we
obtain s
A€z, €2-1) < hd($a1-1,821-2) -oovnnen (3.5.5)
Using (3.5.5) in (3.5.4), we get
d(&5141.821) < h2d(E21-1) Eapz)eerrmenenns (3.5.6)

Continuing this process, we obtain
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d(&a141,621) < h"d(61, &) (3.5.7)
Foranyl > 1,p = 1, we have
d(fzt» €2l+p) < s[d(&z €241) + d(€21+11€21+p)]
< 5d(§21 2141) + 52 (o141, 2142) + 57 (o142, §2143)
T +s2P 1 d(Eqrrap-2, Sarrap-1) + S A (Errhap-1, Eareap).

<sh?d(&;,&p) + s2h**1d (&, &) + s>h?*2d (84, &)
......... +s2PR2IF20-1G (£, £,
=sh?' 1 + (sh) + (sh)? + (sh)3. ... .. ... +(sh)?P71d (&1, &).

Shzl
< 1-sh d(fll EO)
Let 0 «< r be given. Notice that — d(&;,¢,) — 0as ! — oo for any p. Making full

Shzl
1-sh .
use of lemma 2.7(i), we find I, € N such that ="— d(&, o) < €, for each I = I,.

Thus, d($21,$214p) K € for all 1 = 1,p > 1. So, by lemma 2.7(ii), {¢,,} is a Cauchy
sequence in (£, d). Since (£, d) is a complete cone b- metric space, there exist u € X

such that {,; > u, as [ —» oo. Taken [, € N such that d(;u) < TA-sGatsha) for

S(2A1+2y)
alll > 1,. Hence
d(Fau' u) < S[d(Fau' FaEZI) + d(FaEZIIu)]
= Sd(Fau' EZZ)' +Sd(Fa€21' u)
< sh[d(u, &) + d(u, Fuu)+ d(&2, Faé) 1422[d (w, Foéay) + d (6, Fyu)
+sd (2141, W
< s{dw, € ) +d(u, Fpu) + d(521,521—1) + Aps{d(w, &p41) + d(Eap, Fpu)} ]

+5d ($2141, W)

= s[M{dw, &) +d(u, Fau)+d(521,u) + d(w, &40} + A2{d (W, &3141) +

(sd($zpw) + sd(u, Fu))}]

+sd ($141,U).
This implies that
d(F,u,u) < s(A + sAy) d(Fu,u) + s(2A +2)d(w, &)
+s(A + 22 + Dd(w, 141)
1-s(A; + sA)d(Fu,u) < s(2A1 +2)d(w, &) + s(Ay + A5 + D)d(u, $141).

S(2A1+2A3) s(A1+Ax+1)
Sod(Fu,u) < T sOutshy) d(é,,u) +—1_SO\2+SA2) d(u,é541) < r, for each l = [,.

Then by lemma 2.8 we deduce d(F,u,u) = 0,i.e., Fu = u. That is, u is a fixed point
of F.
Similarly, we can prove that, Ggu = u. That isu is a fixed point of G. Therefore,
Fyu = u = Ggu. Hence, u is a common fixed point of F and G.
Now to prove its uniqueness, If u* is another common fixed point of F and G such
that Fu™ = u* = Gu™, then by the given condition (3.5.1), we have
d(w,u) = d(Fu, Ggu™)
< Ald(u,u®) +d(u, Fu) + d(u’, Ggu™) + A, [d(u, Ggu™) + d(u’, Fu)].
< (A; + 2s54,) d(u,u").
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By lemma 2.9, u = u*.Therefore, u is unique common fixed point of F and G.This
completes the proof of the theorem.

Theorem 3.6: Let (Q, d) be a complete cone b- metric space with the coefficient s >
1. Suppose T,F:Q — Q be a self mappings satisfying the following contraction
mappings

d(T, (), FP5(¢)) < MIA(5,T.(©)) +d(d, FP5(4)) 1 +2, |d (&, F25(9)) +
d($,7.°5))]
+ Aamax[d(§, T,(©)), (@, F?5(9)), d (& F?5(¢) )1+ [ d (€, ) +

d(, T4E))]- (3.6.1)
for all x,y € Q, and a, b > Owhere 14,2, A3 € [0,1)are constants such that 2(A; +
sA, +sA3) +sA, < 1. Then F has a unique fixed point in X. Furthermore, the
iterative sequences Then F and G have a unique common fixed point £* € Q. And for

any £ € Qjiterative sequence {F,****¢} and {Gz*'*?¢} converges to the common fixed
point.

Proof: Let &, be an arbitrary point in Q. We define the iterative sequence {¢,,} and
{$2n+1} DY

Eivn = T80 = T& & (3.6.2)
and

21+1
$2it2 = Fp?le'ﬂ = ;? $oennen (3.6.3)

Puté =&, and ¢ = &,;_4 in (3.6.1) we get
d(€2i+1,,€2i) = d(TL?fZi' Fé’fzt—ﬂ
< M [d(ai Teéz) + d(fzt—p FﬁbEZi—l)] +A, [d(fzi, F;?fzi—l) + d(&2i-1, Teé2:)]
+Asmax[ d(&y;, T4 ézi) + d(‘fzt—p Fé’fzt—1)' d(fzv Féjle'q)]
+4[d (€21 §2i-1)+, A (2i-1, TE 20 .
< M[d(&2i $2ie1) + d(§2i-1, E20)] FA2[d (€2, €20) + d(S2i-1, §2i41)]
+Azmax[ d($z; €2141), A(§2i-1,€20), A (6200 €20) |1 + Au[ d(§24, E2i-1) +
d(§2i-1, &2i41)]
= Mld (€20 2i01) + d(2i-1, E20)] + 22d (&2i-1, 2i41)
+ Asmax[d (&2 €2i41),d(§2i-1,$2:) ]
[ d(&2i02i-1) + d(&2i-1,E2i41)]-
=M[d(€2i €2i41) + d(S2im1, §20) )IF SA2[d(§2i-1,€20) + d (21 €2i41)]
+Asmax[ d(&2; €2i41),d(2i-1, §20)] FAul d(&2i §2i-1) + s{d(&2i-1,&20) +
d(&2i, $2i+1)3]
< AL +sA+ A3+ (1 +9)A]d(Ei1,820) + (A + 54, + A3 + 5/14)d(§2i+1,€2i)-
Therefore,
- 4 sho + A3+ 5Ag] d(E2i41,620) <M+ 525 + A3 + (1 + $)A]d(E2i-1, 621 )
Hence,
[A+sAz+ A3+ (1+s)A,
1—[Ag +5Ag+ Az +50g]

d(E2101.621) < L d(&0,600)
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< hd (21, §2i-1), (3.6.4)

[}L1+S7\2+ )L3+(1+S)}\4] -
Dot 57yt Aatsha] <1 .As 2(A; +sA, +sA3)+ s, <1 we obtain

that h < 1. Similarly, we obtain

where h =

hd($2i,82i-1) < hd(§2i-1,82i-2) ... (3.6.5)
Using (3.6.5) in (36.4), we get

d(&si41,621) < h?d(Eim1, Erimz) e (3.6.6)
Continuing this process, we obtain

d(&ri41,621) < h"d (61, &o) (3.6.7)

Foranym > 1,p = 1, we have

d(me, 52m+2p) < sld(€om Eame1) + d(Eams1 Soam2p)]
< sd(&m, Eoms1) T 5%d(Eomet, Eamez) T 52d(Eamezr S2me3)
to +52p_1d(52m+2p—2,52m+2p—1) + Sp_ld(€2m+2p—1'€2m+2p)
<sh®™d(&y,&p) + s2h?™H1d (&4, &) + s3h?™H2d (&4, &p)
+......+sPR2MF2P-14 (&, &)
= Sh2M[1 + (sh) + ()2 + (Sh). oo o . +(sR)2P 1]y, E0).
Shzm

<1 d(&1,$0)-

Sth
1—

Let 0 < € be given. Notice that d(é1,&,) = 0asm — oo for any p. Making full

sh
use of lemma 2.7(i), we find my € N such that% d(é1,¢0) < €, for eachm = m,.

Th, d(&2m, Eamazp)) < € that 2 d(x;,x0) <€ for all m>1,p> 1. So, by

lemma 2.7(ii) {&,,,} is a Cauchy sequence in (Q, d). Since (Q, d) is a complete cone b-
metric space, there exist v € X such that &,,, » v as n - o Taken ny € N such

€[ 1—sA1+5%22,+5%1,)]
>
that d (&5, v) < 7 Ot Tathatin) for all n > ny.Hence

d(Tgv,v) <s[d(Tgv, T7Ez) + d(Tg &2, v)]
= Sd(Ta?v' TC?{:ZL')’ +Sd(TO?EZi' 17)
< s[A{d (v, T§v) + d(85: TEE5) 3 +0{d (v, TEE,) + d (20, Tév) 3
tAgmax{d(v, Tgv), d(§2i, Ti'$20), AW, T §20) A {d(, &) + d($2, TZv) ) }

+5d($2141, V)

<sM{d(v, Tgv) + d(fzt,52i+1) b+ 24dW, &i41) + A (&2, TEV) }

+ 7\3max{d(v, T{v), d(fzi,€2i+1)' d(,&2i41) } + A {d(v, &) + d(&2:, T v)

+5d($2141, V).

<(A +5%24, + 52/14) d(Tjv,v) + S (M + A+ 25+ Ay) d(&31,v)

+{s(1+ 22) + 541 +23)} d(v, $2141)

Implies that
[1— s\ + 522, + s22)]d(TEv,v) < s?2 (M + A+ 25+ 4,) d(&;,v) +
LI )
S0, d(T¢v,v) < S SEIEIE d(8y,v) + IS E T (1, 6) K €
for each n > ny. Then by lemma 2.8 we deduce d(Tjv,v) = 0,i.e.,Tgv = v.Thatis
v is a fixed point of T.
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Similarly, we can prove that,Fbﬁ (v) = v. That is v is a fixed point of F. Therefore,
Tlv=v= be’(”)- Hence, v is a common fixed point of T and F.

Now to prove its uniqueness, If v* is another common fixed point of F and G such
that Tv* = v* = Fv*, then by the given condition (3.5.1), we have

d(v,v*) = d(Tv,Fv*)
<MdWw,Tv) +dW@*, Fv*) ] +X,[d(v, Fv*) + d(v*Tv) }
+Asmax{d(v,Tv),d(w*, Fv*),d(v, Fv*)} +A, [d(v,v*) + d(v*, Tv) ]
<[25(A, + Ay) + 23] d(v,v")
<2\ +sA, +sA3) +sA]d(v,vY)

Owing to 0 < [2(A +sA, +sA3)+sA, ] <1. Then by lemma 2.9, v= v"
Therefore, v is unique common fixed point of T and F.

IV. CONCLUSION

The main results are a few valuable additions to the available references for cone b-
metric spaces and some fixed-point theorems for contrasting mappings in the
configuration of cone b-metric spaces. The results presented here generalise and
complement some of the earlier work presented in the existing literature by Kurre, R.
etal. [12].
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