International Journal of Mathematics Research.

ISSN 0976-5840 Volume 13, Number 1 (2021), pp. 1-20
© International Research Publication House
https://dx.doi.org/10.37622/1JMR/13.1.2021.1-20

Variants of R-Weakly Commuting and Reciprocal
Continuous Mappings in $ -Metric space

Neeru Yadav & Balbir Singh*
School of Physical Sciences, Department of Mathematics,
Starex University, Gurugram, 122413, Haryana, India.

* (Corresponding author).

Abstract
In this paper, we prove common fixed point theorems for variants of R-weakly
commuting and reciprocal mappings in $ -metric space that contains cubic
and quadratic terms of distance function $(x, ¢, 7). At the end, we provide an
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1. INTRODUCTION

The Banach fixed point theorem is the fundamental method for studying fixed point
theory, it states that every contraction mapping on a complete metric space has a
unique fixed point. Let (X,4) be a complete metric space. If T: X —
X satisfies d(T'(x),T(y)) < (d(x,y))forall x,4 € X,0< £ < 1,then it has
a unique fixed point. In 1969, Boyd and Wong [2] replaced the constant £ in Banach
contraction principle by a implicit function ¢ and proved some fixed point theorems.
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In 1997, Alber and Gueree-Delabriere [1] introduced the concept of weak contraction
in metric space: A map F: X — X is said to be weak contraction if for each x, ¢ €
X, there exists a function @ : [0, ) — [0, o), @ (£) >0 forall# > 0and @ (0) =0
such that d(T(x),T(y)) < d(x,4)— 0 (d(x,4)).

After that many author's have proved many common fixed point theorems using these
type of contraction conditions in the literature.

In 1986 Jungck [7] introduced more generalized commutativity, so called
compatibility. The notion of compatibility is an iterate of sequence.

Two self-mappings f and g on a metric space (X,d)are called compatible if
lim,d(fgx,, gfx,) = 0, whenever {x,,} is a sequence in X such that

lim,fx, = lim,gx, = t,forsome tinX.
In 1996, Jungck [4] introduced the notion of weakly compatible mappings and
showed that compatible maps are weakly compatible, but converse may not be true.

Two self-mappings f and g on a metric space (X, &)are called weakly compatible if
they commute at their coincidence point i.e.,

if fu = gu forsome u € X then fgu = gfu.

Two self-mappings f and g on a metric space (X,d) are called point wise R —
weakly commuting on X if given x € X , there exists R >0 such that
ad(fgx,gfx) < Rd(gx, fx) forall x in X.

Remark 1.1 It is obvious that point wise R — weakly commuting maps commute at
their coincidence points, but maps f and g can fail to be point wise R -weakly
commuting only if there exists some x in X such that fx = gx but fgx # gfx.
Therefore, the notion of point wise R -weak commutativity type mapping is
equivalent to commutativity at coincidence points.

Definition 1.2 [18] Two self mappings f and g on a metric space (X, d) are said to
be reciprocally continuous if lim fgx, = ft and lim gfx, = gt ,whenever {x,}
n—->oo n—-oo

is a sequence in X such that fx,, = lim,gx,, =t for some t in X.

Remark 1.3 Continuous mappings are reciprocally continuous on (X, 4), but the
converse is not true.

2. PRELIMINARIES

In 2006, Zead Mustafa and Brailey Sims [10] introduced the notion of $-metric space
as generalization of the concept of ordinary metric space.
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Definition 2.1 [10] "A $-metric space is a pair (X, %), where X is a non-empty set
and $ is a non-negative real-valued function defined on X' x X x X such that for all
x,4,%,a € X, we have

(i) S y2z)=0ifx=y =z,
(i) 0 < $H(x,x,1), forall x,4 € X, with x # 4,
@) S x9) <Hx,y,2)foral x, ¢4,z € X, with z # ¢,

(iv) 94,2 =921y =951y z5x) =", (synmetry in all three
variables),

(V) S(x,4,2) <Hx,a,a)+ H(a,y,z), for all x,4,z3,a € X (rectangle
inequality).

The function $ is called $H-metric on X."

Definition 2.2 [10] "A sequence {x,} in a H-metric space X is said to be convergent
if there exist x € X such that lim $(x, x,, x,,) = 0 and one says that the sequence
n,m—oo

{x,} is H-convergent to x. We call x the limit of the sequence {x,,} and write x,, - x
or lim x, = «."

n—-oo

Definition 2.3 [10] "In a $-metric space X, a sequence {x,} is said to be $-Cauchy
if given € > 0, there is n, € N such that $(x,, x,,, x;) <€, for all n,m,l = n, i.e.,
S(xp, 2, 2) > 0asn,m,l - .

Proposition 2.4 [10]" Let X be $-metric space. Then the following statements are
equivalent:

Q) {x,} Is H-convergent to x,

(i) H(x,, x,,x) > 0asn — oo,

@iii) 9y, x,x) > 0asn - oo,

(iv) 9y, x,,x) > 0asn,m— o

Proposition 2.5 [10]" Let X be $-metric space. Then the following statements are
equivalent:

Q) The sequence {x,,} is H-Cauchy;

(i) For every € > 0, there exists ny, € N such that $(x,, xm, xm) <€,
vn,m = ngy."

3. POINTWISE R -WEAKLY COMMUTING AND RECIPROCAL
CONTINUOUS MAPPINGS
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In 2010, Manro [8] introduced the concept of weakly commuting, R -weakly
commuting, R -weakly commuting maps of type(P) in $- metric space.

Definition 3.1 [8]" Two self-mappings f and g on a $- metric space (X, $)are called
weakly commuting if $(fgx, gfx, gfx) < H(fx,gx,gx), forall x € X."

Definition 3.2 [8]" Two self-mappings f and g on a $- metric space (X, $) are called
R -weakly commuting if there exist a positive real number R such

that H(fgx, fgx, gfx) <R H(fx, fx,gx), forall x € X."
Remark 3.3 If R < 1, then R -weakly commuting mappings are weakly commuting.

Definition 3.4 [22]" Two self-mappings f and g on a $- metric space (X, $) are
called compatible if, whenever {x,} in X such that {fx,} and {gx,} are § -
convergent to some t € X, then lim $(fgx,, fgxn, gfx,) =0."

n—->oo

Definition 3.5 [8]" Two self-mappings f and g on a $- metric space (X, $) are called
R -weakly commuting mappings of type(P) if there exist a positive real number R
such that H(ffx,ggx,9g9x) < R H(fx,gx,gx), forall x € X."

4. MAIN RESULTS

In 1994, Pant [17] defined the notion of R-weakly commuting mappings in metric
space to enlarge the scope of study of common fixed point theorems from class of
compatible maps to the wider class of R-weakly commuting mappings. These maps
are not necessarily continuous at fixed point. In 2013, Murthy and Prasad [9]
introduced a new type of inequality for a map that involves cubic terms of metric
function d(x, ) that extended and generalized the results of many cited in the
literature of fixed point theory. In this section, we extend the result of Murthy and
Prasad [9] for point wise R-weakly commuting mappings and reciprocal continuous
mapping satisfying a generalized weak contractive condition involving various
combinations of $-metric functions

Theorem 4.1 Let A,B, S and T are four self mappings of a complete $ — metric space
(X, %) satisfying the following conditions:

(€1) S(X) cB(X),T(X) c A(X);
(€C3)(A,S) and (B, T) are point wise R-weakly commuting pairs;
(€C3)(A,S) and (B, T)are compatible pairs of reciprocally continuous mappings;

(CY[1 + AH(Ap,Bg, Bg)19*(Sp,T4,Tq) <
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1 [ 9*(Ap, Sp,Sp)$(Ba, Ta,Tq)
214+9(Ap, Sp, Sp)H* (B4, T4, Tq))’ }
S(Ap, Sp, Sp)H(Ap,Ta,Tq)H(Bqg,Sp,Sp),
S(Ap,Tq,74)9(Bg, Sp,Sp)H(Bg,Tq,Tq)

+o(Ap,Bg) — 0(o(Ap,Bg),

( $*(Ap,Bg, Bg), \
S(Ap, Sp,Sp)H(Bq,Taq,Tq),
S(Ap,Ta,Ta)H(Ba,Sp,Sp),

1 [Sb(a‘lzv, Sp,SpIH(Ap,Tq,Tq) +
Gl $(B4,50,50)9(Ba,74,74)

£ = 0 is areal number and @: [0, ) — [0, o) is a continuous function with @ (£) =0
iff£ = 0 and @(#) > 0 for each # > 0.Then Au =Bu =Su=Tu =wuand u is a
unique inX.

hmax{

where o (Ap,Bg) = max

Proof. Let x, € X. Using (C;),we can find a point x; € X such that S(x,) =
B(x1) = yy. For this point x4, we can find another point x, € X such thaty, =
A(x;) =T (xq).

In general, one can construct a sequence {¢,} in Xsuch that
Yon = S(x21) = B(%2n41);

Yons1 = T (Xans1) = A(x2p42), for each n=0.
(4.2)

For brevity, we writery, = $(¥n—1, Y Yn)-
Firstly, we will prove that 75, is non-increasing sequence and converges to 0.
Case l. If nis even, taking p = x5, and g = x,,41 in (C4), We get

[1 4+ AH(Axom, BXops1, BEons 1)1 (SXon, T o401, Thons1) <

l[ 9% (Axzn, S0, S220) 9 (BX2n41, T ¥2ms1, T X2 41)
A max! 2 14+9(Axpn, S0, Sx20)H* (Boni1, T o 41, Tk ons 1)1 l
g)(CAxZnJ ‘SxZn: SxZn)g)(quZn: Tx2n+1' Tx2n+1)g)(Bx2n+1' Sxan SxZn);
H(Axon, Txon11, T X204 1) D (BXons1, %2, SX20) D (BX2ns1, T o011, T X2n41)

0 (Ax2n, Bxans1) — 0(0(Axzn, Bxons1),

9% (A%xn, BXons1, BXons1),
I D(Axon, 8%on, S220) D (BXons1, T%2n41, T Xons1), 1
where  o(Axy,, Bxyniq) = max D(Ax2, T Xon 41, T X0 41) D(BXon1, SXon, SXap),
[ 1 [ H(Axop, S, S220)D(AXo0, T Xon41, TXon41) + ] |
tz H(Bxont1,S%2n, S%20) D (BXons1, T X2n41, T Xon41)
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Using (4.2), we get

[1+ A9 (Yon-1, Y2 Y2n)19* Won, Yont1, Yons1) <

1 [ 9* (Yan-1,¥2n Y2n) D Yon Yoni 1 Yan+1) ]
A max 2149 Won-1, Yon Y20) 9> Yo Yon+1, Yan+1)

g)(@Zn—l: Yon @Zn)g(’y’Zn—l' Yon+1, 92n+1)‘6(y’2n' Yan, y’Zn)r

D Yan-1, Y2n+1 Y2n+1)D Gon Yon Y2n) D Y2n Yon+1, Yan+1)

+o(Yon-1,%2n) — 0(0(Y2n—1,%2n);

{ 552(9’271—1'9’211' ’y’Zn)' ]
5(%271—1' Yon, ’y’Zn)g)(’y’Zn' Yan+1, y’2n+1)r
{ 5(%271—1'y’2n+1"y’2n+1)55(’y’2n"y’2nr’y’2n)r
ll [55(%271—1' Yaon Y2r) D W2n-1, Yont1 Y2nt1) +]J
2 S (Yon Yon Y2n) 9 Yon Yons1, Yans1)

On putting 72, = $(Y2n—1, Y2n, Yan) We have

where  o(y2n-1,%20) = max

1
[1 + h”'~2n]”ﬂ22n+1 < Amax {E [””22n4’v2n+1 + 4’2n4/v22n+1]v 0,0}

+ o (Y2n—1,%2n) — 0(0 (Y2n-1,%2n))

1
whereo (¢n—1, Y2n) = max {4”22n"’”2n””2n+1' 0'5 [72n D Y2n—1, Y2n+1, Yans1) + 0]}

By using rectangular inequality and property of @, we get

SWan-1, Yan+1 Yan+1) S DWan-1, Yan Y2n) + 9W2n Y2nt1, Y2n+1)
=79, + 1one1 and

o (Yan-1,Y2n) < 71(%,4) = max {””zzru TonT2n+1s 0'%[”"211(””211 + 7on41)s 0]}

If 5 < 79541 , then we get

hrp 1 < Ard . — O(rE,.41), acontradiction.

Therefore, 74,.1 < 72, 1.8., ¥oni1 < 7on.

Similarly, if » is odd, then we can obtain 75,5, < 75,41

It follows that the sequence {#3,} is decreasing.

Let lim 7y, = x, for some x > 0.

n—-oo
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Suppose x > 0; then putting p = x,, and g = x5, in (C,), We have

[1+ AH(Axyn, Bx2n+1’Bx2n+1)]5§2 (Sx20, T22m41, T Xons1) <

( 1[ 9% (Ax2n, SFan, S%20)D(BXans1, T¥2m11, T X2n41) )
A maxi 2 1+9(Axon, Sx20, Sx20) 9 (Bxoni1, T 2p41, T 2ns 1)1 }
D(Ax20, 8220, S220)D(Ax20, T 22011, T X20n11) D(BXon 41, SX2n, SX2n),
H(Ax2, T X011, TX2041) D (BXont1, S %20, SX2n) D (BX2nt1, T %2n41, T X2n41)

+ o (Axypn, Bxons1) — O(0(Axzn, Bxoni1),

( g)z (‘AxZnJ Bx2n+1: Bx2n+1): \
l D(Axn, 8%, S%20)D(Bxon+1, T Xon+1, T Xan41), !
where  o(Axy, Bxonsr) = max{ H(Axon, Txon11, T22041) 9 (BX2n41, S%an, S%2n), ¥
I

1 [ g(ﬂxZni 5.762”, ‘SxZn)g)(‘ﬂxZnJ Tx2n+1r Tx2n+1) + ] l
2

)

Now by using triangular inequality and property of @ and proceeds limit n — oo, we
get

[1+ Ax]x? < Ax® + 2% — B(x?).

H(Bxon+1,Sxon, S%20)D(BXon+1, TXon41, TX2n41)

This implies that @(x?) < 0. Since x is positive, then by using the property of @, we
get x = 0. Therefore, we conclude that

Al_f){)lo Ton = 711_{20 9 Yan—1,Y2n Y2n) = x = 0. (4.3)

Next, we show that {¢,} is a Cauchy sequence. Suppose we assume that {¢,,} is not a
Cauchy sequence. For a given € > 0, we can find two sequences of positive integers
{m(#)} and {n(#£)} such that n(#) > m(£) > k,

S(Ymy Yny Ynw) 2 € S(Ymer) )1 Ynir)-1) <E (4.4)
Now €< S(Ymea) Ynth) Ynch))
< H(Yma) Ynr)-1 Yn)-1) + D(Ynir)-1 Ynie) Ynir))
Letting k — oo,we get im $(ymes) Ynr) Ynca)) = € (4.5)
Now from the rectangular inequality, we have,

19(%ne) Ymrr 1 Ymey+1) — S(Bma) Ynw) Ynw))|
< b(@/’m(k), Ym#)+1) ’y’m(%)+1)
Letting k — oo, and using (4.3) and (4.4), we get

}jj‘g‘o 5(%n(/&)'y'm(k)+1:/y’m(k)+1) =€ (4.6)

Now again from the rectangular inequality, we have,
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19(¥mee)+1 Ynier+n Ynwy+1) — D(Ymey Ynis) Ynw)|
< 5(Um)y Yme)+1 Ymay+1) + D (Pne) Ynr)+1 Ynir)+1)
Letting k — oo, and using (4.3) and (4.4), we get

}jj{}o 55(%1(&)“»%m(/&)ﬂ,%m(/@)ﬂ) =€ 4.7)
On pUttIng Py = xm(,k) and q, = xn(&) in (C4-); we get
[1 + /L&(a‘lxm(k),an(k),an(k))]g)z(c?xm(k),Txn(k),f]"xn(k)) <

L[ 9 (Azm(ry, Sm(ry S2m(r))D(BEn(ry, T Zncey Tnch))

2 [+9(Axmny SEmy SEma)) D2 (BEnchy T Xncay Tncry)]’
H(Axmay, Sm (k) SEm(w)) D (A%m(ry, T (wy, Tnir))D(Bncay, Sm(h) SEms))»
H(Axmy, Tnck) T %n k) )D(BEn(e) STmery, SEmk))D(BEnch) T ¥n(h) T ¥n(s))

+ o (Axmgy, Bxnsy) — (0 (Axmy, Bxncs)),

£ max

where  o(Axppy, Bxnp)) =
( 92 (Axms), BEn(r), Bxn(h)),

H(Am(r), SEms) SEm))D(BEncey, Tn(a), T %n(e))s
max < Sf)(c/lxm(k),Txn(/&),Txn(/&)),ﬁf)(an(,&),Sxm(/&), Sxm(/&)), >
1 [D(Amery, S2m(ry, Sy )D(Am(my, T 2ncey, Toncay) +
2| H(BEncry, SEmt) SEmer))D(BEncay, Ty, Tnch))

Using (4.2), we get
[1+ AS(Yme)-1, Yne)-1 Yne)-1) |92 (Ymery Yncry Ynory) <

1 $* ('y’m(la)—l' Ymk) y‘m(l&))g(y’n(/&)—l' Yn(r) %n(/&)) ]
2 +55(@m(/¢)—1' Ymk) %m(/&))ﬁz (’y’n(/a)—l' Yn(r) %n(/&)) '
D(Ymr)-1 Ymery Yma) ) D (Ymr) -1, Yncky Yna))D Yns)-1, $m)y Yma))»
D (Ymr)—1 Yy Ynir)) D Pnay—1 Ymry Ymr)) D (Pnh)-1, Yn(ry Ynk))

A max

+0 (Ymry-1, Yny-1) — D (Ymeay-1, Yner)-1),

where Cf(%m(/a)—p@/’n(k)q) =

( 5% (Ym)-1, Yn(h)-1 Yn(k)-1)» )
D(Ymr)—1 Ymery Yma) ) D (Ynir)—1, Ynh) Ynir))>

max<{  H(Ymm)-1 Yniay Ynr))D Hnr)-1 Ymay $mw))>

1 S (Ymr)—1 Ymery Yme) ) D Ymr) -1, Yn(ry Ynpy) +

2| S(Ynty-1 Ymery Ymr))D Hnr)—1 Yncry Yncr))

"
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Letting k — oo, we get

1
[1+4 €] €2< Amax {E [0+ 0], o,o} +e2— p(e?)

= €2— @(€?), a contradiction.

Thus {¢,} is a Cauchy sequence in X.From the completeness of X, there exists a z €
X such that ¢,, - z asn — oo.

Moreover, since

Yonr1 = T (Xans1) = A(Xops2) and ¢, = §(x2,) = B(xan41)are subsequences of
{4}, we obtain

liln_}ozw(xmﬂ) = rlli_f)lgod‘l(xmu) = Tlli_f)rc}os(xm) = rllijgoB(xZn+1) =3z
If B and T are compatible, then
Al_r)glo S(BTx,, TBxy,, TBx,) = 0;

that is, Bz = Tz. Also by the reciprocal continuity of B and T, we have

lim BT x,, = Bzandlim TBx,, = Tz.

n—oo n—oo

Since T(X) c A(X), there exists a point 2+ in X such that Tz = Aw.
Setting » = w and g = z in (C,), we get

[1+ AH(Aw,Bz,Bz)]|H*(Sw,T3,T2)
119%(Aw, Sw, Sw)H(Bz, T3, T2) +
2| $(Aw, Sw, Su)9*(Bz,T3,T3z) I’
S(Aw, Sw, Sw)H(Aw,T3,T2)H(Bz, Sw, Sw),
S(Aw,T3,T2)9(Bz, Sw,Sw)H(Bz,T3,T3)

+0 (Aw,Bz) — 0(o(Aw,Bz)),

( $2(Aw, Bz, Bz), \
| $(Aw, Sw,Sw)$(Bz,T2,Tz), |
where o (Aw,Bz) = max S(Aw,T2z,T3)H(Bz, Sw, Sw), = 0.
1[9(Aw, Sw, Sw)H(Aw,Tz,Tz) +
E[ $(Bz, Sw, Sw)$(Bz,Tz,T2) ]

< A max

This implies that

[1+A9(Tz,T3 T2)]9*(Sw,T3,T2)
1 8 (Tz, Sw,Sw)H(Tz,T2,T3) +]
<4 { 2l 9Tz Sw,Sw)$*(Tz,Tz,Tz) |’
< Amax
STz, Sw,Sw)H(T2,Tz,T2)H(Tz, Sw, Sw),
NT2,T3,T2)9 Tz, Sw,Sw)H(Tz,T2,T7)

l+0—¢(0),
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210 + 0]
i.e.,bz(cSw,Tz,Tz)Spmax{z 0, ,}+0—®(0),
0

which implies that S« = Tz, and hence Sw = Tz = Aw = Bz.

The point wise R-weak commutativity of B and 7" implies that there exists an R > 0
such that S(BT3,7Bz,TBz) < R H(Bz,73,T3),

which implies that BTz = TBzand 7Tz = 7Bz = BTz = BB3.

Similarly, the point wise R -weak commutativity of A4 and S implies that there exists
an R > 0 such that H(ASw,SAw,SAw) < R H(Aw,Sw,Sw),which implies
that ASw = SAw and AAw = ASw = SAw = SSw.

Again substituting p = w and g = Tz in (C,), we get

[1+ A9H(Aw,BT3,BT3)|9*(Sw,TTz,TT3)
1192(Aw, Sw, Sw)H(BTz,TTz,TTz) +
J 2| $(Aw, Sw, Sw)H2(BT7,TT3,TTz) |’ l
S(Aw, Sw,Sw)H(Aw,TTz,TTz)H(BT 3, Sw, Sw),
SNAw,TTz,TT2)H(BT z,Sw,Sw)H(BT2,TT3,TTz)

+o(Aw,BTz) — 0(o(Aw,BT3z)),

( $2(Aw, BTz, BT7), \

S(Aw, Sw, Sw)H(BT 3, TTz,TTz),

where o (Aw,BTz) = max S(Aw,TTz,TT2)H(BT 3, Sw, Sw),
| 1 [S(Aw, Sw, Sw)H(Aw,TTz,TTz) +]|

2| $(BTz, Sw,Sw)$H(BTz,TTz,TT3)

< A max

On simplification we have

1[O+O]
2 )

0,
0

+9%(T2,TT3,TTz) — 0(H*(T2,TT2,TT3)).
Hence Tz = TTz. Thus Tz =TTz = BT 3.

1+ 49T 3,TT2,TT2)]9%(T3,TT3,TTz) < Amax

Therefore,7z is a common fixed point of B and 7.

Taking p = Sw and g = z in (C,), we get
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[1+ AH(ASw, Bz, B2)]H*(SSw,T3,T3)

( 119*(ASw, SSw, SSw)$H(Bz,T3,Tz) +
< A max i 2| $(ASw, SSw,SSw)H%(Bz,Tz,Tz) |’ }
- H(ASw, SSw, SSw)H(ASw,Tz,T2)H(Bz, SSw, SSw),
S(ASw,T3,T2)9H(Bz, SSw,SSw)H(Bz,T2,T3)

+0(ASw,Bz) — (0 (ASw,Bz)),

( $%(ASw, Bz, Bz), \
| $(ASw, SSw,SSw)$(Bz,Tz,Tz), |

where o (ASw,Bz) = max { SN(ASw,Tz,T2)9(Bz, SSw,SSw), }
Ll S(ASw, SSw, SSw)$(ASw, Tz, T7) +] |

2| $(Bz,SSw,SSw)$(Bz, T2, Tz) 1)

On solving, we have
[1+ AH(SSw, Sw, Sw)]|H?* (SSw, Sw, Sw)
1

2[0+0],

0,
0

Hence Sw = SSw. Thus Sw = SSw = AAw,

< A max + 9% (Sw, SSw, SSw) — B(H? (Sw, SSw, SSw)).

Thus S is a common fixed point of A and S.

If Sw =Tz = u, thenTu = Bu = Su = Au = u. Hence u is a common fixed point
of A,B,Sand T.

Uniqueness: Suppose that v # u are two common fixed points of A, B, Sand T'.
On puttingp = u and ¢ = v in (C,), we have

[1+ A9H(Au, Bv, Bv)]|H*(Su, Tv,Tv) < A max{0,0,0} + o(Au, Bv) —
@ (o (Au, Bv)).

ie, [1+ 49w, v,v)]H*(w,v,v) < £ max{0,0,0} + H2(u, v,v) — 0(H(u, v, v))
i.e.,$%(u,v,v) = 0, This implies u = v.

This completes the proof.

5. R- WEAKLY COMMUTING MAPPINGS OF TYPE (P).

In 2009, Kumar et al. [10] defined the concept of R- weakly commuting
mappings of type (P) in metric spaces and proved a common fixed point theorem
using these mappings.

Now we prove a common fixed point theorem for pairs of R- weakly commuting
mappings of type (P) satisfying a weak contraction condition that involves various
combinations of the metric functions in § — metric space.
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Theorem 5.1 Let §,7°, A and Bare four self mappings of a complete $ — metric space
X, 9)

into itself satisfying (C;), (C,) and the following condition:

(A,S) and (B, T) are R- weakly commuting of type (P),

Then §,7,A and B have a unique common fixed point.

Proof. Let x, € X. Using (C;),we can find a point x; € X such that S(x;) =
B(x1) = yy. For this point x;, we can find another point x, € X such that ¢, =
A(x,) = T(x41). In general, one can construct a sequence {¢,} in X'such that

Yon = S (X2n) = B(xzn41);
Yons1 = T (Xan41) = A(xny,) foreachn = 0.

From Theorem 4.1, {y,} is a Cauchy sequence in X'. From the completeness of X,
there exists a z € X such that ¢,, — z asn — co. Moreover, since

Yan+1 = T (Fz2n41) = A(Xony2) and yon = S(x2,) = B(xzn41)are subsequences of
{y,}, we obtain

ii_l;goT(xZn+1) = Ai_f}(}od‘l(xmu) = gi_r)folos(xm) = %ET(}OB(xZnH) = Z.

Case 1: Suppose that A is continuous. Then {AAx,,}and {ASx,,} converges to
Az asn — oo, Since the mappings A and § are R-weakly commuting of type (P), we
have

DN(AAXy, 88X, 88%2,) < R H(Axgn, SXon, SXayn).

Lettingn n — oo, we get lim SAx,, = Az.
n—-oo

On puttingp = Ax,, and g = x,,41 In (C,), We get
[1 + AH(AALzy, Bxons1, BXons1)]1D* (SALon, T2on41, T2om 1)

l H* (AALn, SAX 2, SAX20)D(BEan 41, TAons1, Tom41)
< /Lmax{ 2 L+ H(AALsy, SAXyn, SAX2n)H* (BLons1, THons1, Th2ns1)] l
a H(AALm, SALyy, SALXm)H(AALXIn, T2n41, T2n41) D (BXon 11, SALy, SAL2),
D(AAx, Txon41, T22041)D(BXons1, SAX2n, SAX2n)H(BXons1, Ton41, Tx2n+1)J

o (AAxyy, Bxopsr) — O(0(AAxyy, Bxoni1)),

where
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552 (‘A‘AxZn’ Bx2n+1r Bx2n+1)i
5(04047527“ Sc’qun’ SfﬂxZn)g(BxZnHr Tx2n+1i Tx2n+1)i
0 (AALmm, Bxans1) = max{  H(AAxy, Txons1, T2on41)D(BEont1, SAX oy, SAX),
l S5("‘1‘/‘l~%2nv‘S"q’cmr S‘AxZn)g(‘A‘AxZn’Tx2n+1'Tx2n+1)
2 1+9Bxant1, SAL 1, SAX2n)H(BX2n+1, T o1, TX2n41)

Letting limit as n — oo, we have

1[0 + 0]
[1+ A$(Az, 3, 2)]9* (A2, 3,2) < Amax{ > 0 ’

0

+ $%(Az,2,2) — 0(H*(Az,3,2)),

i.e., [1+AH(Az,3,2)]9%(Az,2,2) < 9%(A3,3,3) — D(H*(Az, 2, 2)).
This implies$?(Az,3,3z) = 0, i.e., Az = 3.

Next, we shall show that §z = z.

For this, puttingp = z and g = x,,41 in (C,) and taking limit as n — co we get,

1 52(c/lz,$z,5z)$5(z,z,z)]
21+9(Az,52,52)9* (2,2, 7)) >

9(A%,5%,52)9(Az,3,2)9(3,53,53),
9(Az,2,2)9(3,83,52)9(3, 2, 2)

[1 + ’&g)("qz’BxZnH' B7";2n+1)]~€)2 (551 Tx2n+1'Tx2n+1) < fAmax {

to(Az, z) — O(0(Az, 3)),

9(Az,3,3)9(3,53,53),
1[9(Az,82,52)H(Az, 2, 2)
2| +9(3,53,852)9(3,3,2)

$2(Az,3,3), H(Az,52,52)9(z, 2, z)l
0

where ¢(Az, z) = max

Therefore,
~[0+0],
[1+49(z,2,2)19°(57,2,2) < Amax{~ o +0—0(0).
0

Thus, $2(8z,3,%) = 0, implies Sz = z.
Since §(X) c B(X), there exists a point u € X such that z = Sz = Bu.
We claim that z = Tu.

For this, on putting » = z and ¢ = u in (C,), we get
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[1+ A9H(Az, Bu, Bu)]|H*(Sz, Tu, Tu)
119%(Az, 83, 52)9(Bu, Tu, Tu) +

S4”’Lmaxi 21 $(Az,82,82)9*(Bu, Tu,Tu) I’ f
$(Az,82,83)H(Az, Tu, Tu) H(Bu, Sz, 52),
$(Az, Tu, Tu)H(Bu, $z,52)H(Bu, Tu, Tu)

+0(Az, Bu) — 0(o(Az, Bu)),

( $%(Az, Bu, Bu), \

H(Az,52,52)H(Bu, Tu, Tu),

where  o(Az, Bu) = maxs  H(Az, Tu, Tu)$(Bu, Sz,52),
[ 1[9(Az,57,82)H(Az, Tu, Tu) +]|
k S(Bu,$z,52)H(Bu, Tu, Tu) ])

1
2

Thus we have
[1+ 49(z,3,2)]9% (=, Tu, Tu)

( 1[9%(z.22)9(= Tu, Tu) +

2l 9(,2,2)9%(z,Tu,Tu) I’ B
= hmax{ 9(%,2,2)9(z,Tu, Tu)H(3, 2,2), }+ 0 —0(0).
kSb(z. Tu,Tu)$H(z,2,2)9H(z, Tu, Tu))

Therefore,

210 + 0]
[1+ AH(Az, Bu, Bu)|H*(Sz, Tu,Tu) < A max {2 0, ’} + 0 — @(0).

0

This implies that z = Tu. Since (B, T) is R-weakly commuting of type (P), we have
9(Bz,72,Tz) = H(BBu,TTu,TTu) < R H(Tu,Bu,Bu) =R H(3,3,3) = 0.

Hence Bz = T'z.
Finally, we have

[1+ A$H(Az, Bz, B2)]9*(Sz,T2,T7)
119%(Az,52,52)9(Bz,73,Tz) +
21 $(Az,853,52)9%(Bz,T2,Tz) I’
$(Az,852,52)9(Az,T3,72)9H(Bz,57,5%),
$(Az,T2,72)9H(Bz,52,52)9(Bz,T2,T2)

+0(Az,Bz) — 0(0(Az,Bz)),

< Amax
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( $%(Az, Bz, Bz), \
9(Az,85%,52)9(Bz,T2,T3),
where  ¢(Az,Bz) = maxl 9(Az,T7%,72)9(Bz,52,5%2), & = $%(z, Bz, Bz).
ll 9(Az,83,82)d(Az,T2,Tz) +] |
kz 9(Bz,53,52)9(Bz,73,T3) )

On simplification, we have

[1+49(2,T3,T2)]9%(2,T3,T2)

1
—[0 + 0],
< Aimax{? 0 + 9%(3,T72,T3) — 0(9%(3,73,T3)).
0

This implies that z =7z . Hence 3 =Bz =73 = Az = Sz . Therefore, zis a
common fixed point of §, 7", Aand B.

Case 2: Suppose that B is continuous. Then we can obtain the same result by using
Case 1.

Case 3: Suppose that S is continuous.
Then {§Sx,,,}and {SAx,,} converge to Sz as n — oo.

Since the mappings A and § are R -weakly commuting of type (P), we have
Sj("—"lc’qun'S‘stn"S‘stn) =R g)(c’qunfstnf‘stn)-

Letting n —» oo, we get lim AS x,,, = 53.
n—oo
On puttingp = Sx,, and g = x,,41 IN (C,), We get

[1+ AH(ASxym, Bxonte, Bx2n+1)]552 (8S%0m, T2 o 41, TXop41)
1 [ 552 (04575211' Sstn'Sstn)g)(BxZn+1'Tx2n+1' Tx2n+1) ]
A max

< 2 +9H(ASx20, SS%x2m, SSxZn).ﬁz (Bx2n+1, Txon+1, T2 2m41)
- D(AS K20, SSx90, SSX20)D(AS X2, Tom 11, T80 +1)D(BXops1, SS%2n, SS%2n),
55(04570211' TX2n41) Tx2n+1)55(8x2n+1’ SSx5n, Sstn)g)(BerHl’ T%m41, Tx2n+1)
+0 (ASxyp, Bxons1) — O(0(ASxm, BXoni1)),
where

0 (ASx 2, BXons1)
H?(AS%2n, BxXons1, Bxons1), D(AS X2, SS%30, SS%50)H(BXans1, Thans1, T 2ns1),
.5(%5.’)62”, Tx2n+1r Tx2n+1)g)(Bx2n+1: Sstn: Sstn)J
1 D(ASZ2n, SS%2n, SS%20) H(AS %00, T an 41, T22n41)
21+ 9(Bxons1, SS%om, SSx20) D (B ons1, Tx2n 41, T¥2n41)

= max

|
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Lettingn n — oo,we have
~[0+0],
[1+ 4A95(52,3,2)]19%(53,3,2) < A max 0, + $%(53,3,2) —
0
B(H*(Sz,3,3)),
i.e., [1+ £49(53,2,2)]9%(53,2,3) < 9%(57,3,3) — 0(9H%(57,3, %)),
Thus we get $%(83, z,3) = 0, which implies that Sz = z.
Since §(X) c B(X), there exists a point v € X such that z = Sz = Bv.
We claim that z = T'v.
For this, putting p = Sx,, and g = v in (C,), we get

[1+ AH(ASxy,, Bv, Bv)|H2(SSxy,, Tv, TV)
11 92(ASx2p, SSx50, 8S250)H(Bv, Tv, Tv)
B max J 2 [+35(c/15x2n, SSxyn, SS22)H%(Bv, Tv, Tv)l’ l
D(ASx97, 88297, 88 227)D(ASX97, TV, TV)H(BY, §§ X900, SSX97),
DN(ASx2, T, TV)H(BV, S %90, SS%91,) H(Bv, Tv, Tv)

+0 (ASx9p, Bv) — O(0(AS x4y, BV)),

$2(ASxy,, Bv, Bv),

DN(ASx97, 88X, S8 %2,)D(BY, Tv, Tv),
where o (ASxy,, Bv) = max H(ASx2, TV, TV)H(BV, 88 %9,, S5 %x47),
D(ASXopn, 88X, SSX27)D(AS x5y, TV, TV) +

H(BY,85x5,, 85%2,)H(Bv, Tv, Tv)

<

1
2

On simplification, we get

1+ 49533 2)]9%(3Tv,Tv)
L [9%(2,2,2)9(z,Tv,Tv) + $(3,2,2)9% (2, Tv, Tv)],
< Amaxi? + 0 — @(0).
5(z,2,2)9(,Tv,Tv)H(3, 3, 2),
5z,Tv,Tv)H(3,3,2)9(3,Tv,Tv)

This implies that z = Tv. Since (B,T) is R —weakly commuting of type (P), we
have

S(Tz,Bz,Bz) = H(TTv,BBv,BBv) <R H(Bv,Tv,Tv) =R $(3,3,3) = 0.
This gives Bz =Tz, for R > 0.
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Finally, from (C,) we have

[1+ 4 H(Axyy, Bz, B2)]D*(Sx20, T3, T2)
1 [sz(c/lxm, S%30,8%2,)9(Bz,T2,T3) +]
5 max{ 21 H(Axyy, Sx9, Sx20)9H%(Bz,T2,Tz) 1 l
N 55(04‘”271' CS~x2n' 'SxZn)Sb(‘AxZn' TZ: TZ)%(BZ' SxZn: SxZn)r
H(Ax20,T3,T2)9(Bz, %20, S%21)9(B2,T3,T3)

+0o (Axyp,Bz) — (0 (Axyp, Bz)),

$2(Ax,y, Bz, B2),
D(Ax20, 8220, 8%20)9(B3,T2,T3),
where o(Ax,y,, Bz) = max N Ax0, T2, T2)D(Bz, SXon, SX2p),
1 g)(c’qun' CS‘xZn' SxZn)g)(CAxanTzf TZ) +
5[ $(Bz, Sxpp, S%2)H(B3,T3,T7) ]

Therefore, we have
[1+49(z,T3,T2)]19%(2,Tz,T2)

1
=[0+ 0],
< A max 2 0

0

This gives z = T'z. Since T(X) c A(X), therefore, there exists a point w» € X such
that z = Tz = Aw.

+ 9%(3,T2,T3z) — 0(9*(3,T3,T2)).

We claim that z = Swr.For this, putting p = w and ¢ = z in (C,), we get

[1+ A $(Aw, Bz, Bz)]|9*(Sw,Tz,Tz)
1 [352 (Aw, Sw,Sw)$H(Bz,T2,T7) +]
21l $(Aw, Sw,Sw)H*(Bz,T3,Tz) 1’
S(Aw, Sw, Sw)H(Aw,T3,T2)H(Bz, Sw,Sw),
S(Aw,T3,T2)9(Bz, Sw,Sw)H(Bz,T3,T3)

+0 (Aw,Bz) — 0(o(Aw, Bz)),

< /A max

$?(Aw, Bz, Bz),
S(Aw, Sw,Sw)H(Bz,T3,T3),
where ¢ (Aw,Bz) = max ! S(Aw,Tz,T2)9H(Bz, Sw, Sw), ,
| 1[9(Aw, Sw, Sw)H(Aw,T3,T3) +] |
2| $(Bz, Sw,Sw)$(Bz,T2,Tz) 1)

$%(3,%,%),
I Sz, Sw,Suw)H(T3,T2,T3),
i.e.,0(Aw,Bz) = max 5(z,3,2)9(z, Sw, Sw), = 0.
Il Sz, Sw,Sw)H(3,3,2) + 11
29z, Sw, Sw)H(T3,T2,T2)
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Hence we get  [1 + A9(3, 2, 5)]19*(Sw, 3, 2)

1 [352 (3, Sw,Sw)H(3,2,3) +

2l 9z, Sw,Sw)$%(3,3,2) I’ _
= hmax i@(z. Sw,Sw)$(z,3,2)9H(3, Sw, SW)'} +o- o,

9(z,2,2)9(z, Sw, Sw)$H(z,2,2)

which implies that Sw = z. Since (5, A) is R-weakly commuting of type (P), we
have S(Az,85%,5%) = H(AAw, SSw,SSw) < R H(Sw, Aw, Aw) =
R $H(z,2,7) =0. Hence Az =8z. Hence 3 =Az=8z=Bz=Tz,and z is a
common fixed point of §, 7", Aand B.

Case 4: Suppose that 7 is continuous. We can obtain the same result by using Case 3.
Uniqueness: Suppose that z # w are two common fixed points of S, 7", Aand B.
On putting » = z and ¢ = w in (C,), we get

[1+ A H(Az, Bw,Bw)]|H*(Sz, Tw, Tw)
< £ max{0,0,0} + o(Az, Bw) — 0(¢(Az, Bw))
i.e.,$%(z, w,w) = 0implies z = w. This completes the proof.
Example 3.1 Let X =1[6,24] and $ be a usual $ — metric space defined by

Sx,yv,z)=|x—y|+|y—z|+|z—x| for all x,y,z€X. Define the self-
mappings S, 7, Aand B on X by

16 if 6<x<9 ——
Ax =4 x—3 if x>9 % Bx=t8 lc;;:&;
6 if x=6
Sx = x if x=6;; Tx={7 ifx>6}'
6 if x>9

Let us consider a {x,} with x,, = 6. All the conditions of theorem 4.1 are satisfied.
Thus 6 is unique common fixed point of S, 7, A and B.

Conclusion In this paper, we prove common fixed point theorems for variants of R-
weakly commuting and reciprocal mappings in $ -metric space that contains cubic
and quadratic terms of distance function $(x, ¢, z).
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