HYERS-ULAM STABILITY QUADRATIC β -FUNCTIONAL INEQUALITIES WITH THREE VARIABLES IN γ -HOMOGENEOUS NORMED SPACE

Ly Van An *

Faculty of Mathematics Teacher Education, Tay Ninh University, Ninh Trung, Ninh Son, Tay Ninh Province, Vietnam.

Abstract

In this paper, we study to solve two quadratic β -functional inequalities with three variables in γ -homogeneous complex Banach spaces and prove the Hyers-Ulam stability of quadratic β -functional equations assosiated two the quadratic β -functional inequalities in γ -homogeneous complex Banach spaces. We will show that the solutions of the first and second inequalities are quadratic mappings.

Keywords: Hyers-Ulam stability γ -homogeneous space; quadratic β - functional equation; β - functional inequality

Mathemtics subject clssification (2010): 39B62, 39B72, Secondary 39B52, 39B8

1. INTRODUCTION

Let X and Y be a $\gamma-homogeneous$ normed spaces on the same filed \mathbb{K} , and $f:X\to Y$ be a mapping. We use the notation $\|\cdot\|$ for the norms on both X and Y. In this paper, we investigate first functional inequalities when X is a $\gamma-homogeneous$ real or complex Banach space and Y is a $\gamma-homogeneous$ complex Banach space

$$\left\| f\left(\frac{x+y}{2}+z\right) + f\left(\frac{x+y}{2}-z\right) - 2f\left(\frac{x+y}{2}\right) - 2f(z) \right\|$$

$$\leq \left\| \beta \left(2f\left(\frac{x+y}{2^2}+\frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2}-\frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f(z)\right) \right\|$$
(1.1)

where β is fixed complex number with $\left|\beta\right|<1$, and

^{*}Corresponding Author

$$\left\| 2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f(z) \right\|$$

$$\leq \left\| \beta \left(f\left(\frac{x+y}{2} + z\right) + f\left(\frac{x+y}{2} - z\right) - 2f\left(\frac{x+y}{2}\right) - 2f(z) \right) \right\|$$
 (1.2)

where β is a fixed complex number with $|\beta| < \frac{1}{2}$

The notions of homogeneous real or complex Banach space will remind in the next section. The Hyers-Ulam stability was first investigated for functional equation of Ulam in [24, 25] concerning the stability of group homomorphisms.

The functional equation

$$f(x+y) = f(x) + f(y)$$

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. The Hyers [9] gave firts affirmative partial answer to the equation of Ulam in Banach spaces. After that, Hyers'Theorem was generalized by Aoki[1] additive mappings and by Rassias [17] for linear mappings considering an unbouned Cauchy diffrence. Ageneralization of the Rassias theorem was obtained by Găvruta [10] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

$$f\left(\frac{x+y}{2}\right) = \frac{1}{2}f(x) + \frac{1}{2}f(y)$$

is called the Jensen equation.

The functional equations

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$

is called the quadratic functional equations.

The functional equations

$$f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) = \frac{1}{2}f(x) + \frac{1}{2}f(y)$$

is called the Jensen type quadratic functional equations. See [11, 12, 13]

for more information on functional equations. The Hyers-Ulam stability for functional inequalities have been investigated such as in [7]. Gilany showed that is if satisfies the functional inequality

$$\left\| 2f\left(x\right) + 2f\left(y\right) - f\left(xy^{-1}\right) \right\| \le \left\| f\left(xy\right) \right\| \tag{1.3}$$

Then f satisfies the Jordan-von Newman functional equation

$$2f(x) + 2f(y) = f(xy) + f(xy^{-1})$$

See also [27]. Gilányi [7,8] and Fechner [6] proved the Hyers-Ulam stability of the functional inequality.

Choonkil $Park^a$ [31] proved the quadratic ρ -functional inequalities. Recently, in [18, 31, 32] the authors studied the Hyers-Ulam stability for the following quadraic functional inequalities

$$\left\| f\left(x+y\right) + f\left(x+y\right) - 2f\left(x\right) - 2f(y) \right\|$$

$$\leq \left\| \rho\left(2f\left(\frac{x+y}{2}\right) + 2f\left(\frac{x-y}{2}\right) - f\left(x\right) - f\left(y\right)\right) \right\| \tag{1.4}$$

$$\left\| 2f\left(\frac{x+y}{2}\right) + 2f\left(\frac{x-y}{2}\right) - f\left(x\right) - f\left(y\right) \right\|$$

$$\leq \left\| \rho\left(\left(f\left(x+y\right) + f\left(x+y\right) - 2f\left(x\right) - 2f\left(y\right)\right) \right\|$$
(1.5)

in homogeneous real (complex) Banach spaces

In this paper, we solve and proved the Hyers-Ulam stability for two quadratic β -functional inequalities (1.1)-(1.2), ie the quadratic β -functional inequalities with three variables [11, 13, 14, 18]. Under suitable assumptions on spaces X and Y, we will prove that the mappings satisfying the quadratic β -functional inequatilies (1.1) or (1.2). Thus, the results in this paper are generalization of those in [31] for quadratic β -functional inequatilies with three variables.

The paper is organized as followns: In section preliminarier we remind some basic notations in [28] such as F-norm is called γ -homogeneous $(\gamma > 0)$.

Section 3 is devoted to prove the Hyers-Ulam stability of the quadratic β - functional inequalities($|\beta|<1$) (1.1) and (1.2) when X is γ_1 -homogeneous $\left(\gamma_1\leq 1\right)$ real or complex normed space and Y is γ_2 -homogeneous $\left(\gamma_2\leq 1\right)$ complex Bananch space.

Section 4 is devoted to prove the Hyers-Ulam stability of the quadratic β - functional inequalities $\left(\left|\beta\right|<\frac{1}{2}\right)$ (1.1) and (1.2) when X is γ_1 -homogeneous $\left(\gamma_1\leq 1\right)$ real or

complex normed space and Y is γ_2 -homogeneous $(\gamma_2 \le 1)$ complex Bananch space.

2. PRELIMINARIER

2.1 F^* - spaces.

Definition 2.1. Let X be a linear space. A nonnegative valued function $\| \cdot \|$ is an F-norm if it satisfies the following conditions:

- 1. ||x|| = 0 if and only if x = 0;
- 2. $\|\lambda x\| = \|x\|$ for all $x \in X$ and all λ with $|\lambda| = 1$;
- 3. $||x+y|| \le ||x|| + ||y||$ for all $x, y \in X$;
- 4. $\|\lambda_n x\| \to 0, \lambda_n \to 0;$
- 5. $\|\lambda_n x\| \to 0, x_n \to 0.$

Then $\left(X, \|\cdot\|\right)$ is called an F^* -space. An F-space is a complete F^* -space. An F-norm is called β -homgeneous ($\beta>0$) if $\left\|tx\right\|=\left|t\right|^{\beta}\left\|x\right\|$ for all $x\in X$ and $t\in\mathbb{C}$.

2.2 Solutions of the inequalities.

The functional equation

$$f(x+y) = f(x) + f(y)$$

is called the cauchuy equation. In particular, every solution of the cauchuy equation is said to be an *additive mapping*.

The functional equation $f\left(\frac{x+y}{2}\right) = \frac{1}{2}f\left(x\right) + \frac{1}{2}f\left(y\right)$ called the *Jensen equation*. The functional equation

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$

is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The stability of quadratic functional equation was proved by Skof [27] for mappings $f: E_1 \to E_2$, where E_1 is a normed space and E_2 is a Banach space. Cholewe [5] noticed that the theorm of Skof is still true if the relevant domain E_1 is replaced by an Abelian group.

The functional equation

$$2\left(\frac{x+y}{2}\right) + 2f\left(\frac{x-y}{2}\right) = f(x) + f(y)$$

is called a Jensen type quadratic equation. See [11, 12, 13]

QUADRATIC Γ-FUNCTIONAL INEQUALITY

In This section, assume that β is a fixed complex number with $|\beta| < 1$. We investigate the quadratic β -fuctional inequality (1.1) in γ -homogeneous complex Banach space.

Lemma 3.1. A mapping $f: X \to Y$ satilies

$$\left\| f\left(\frac{x+y}{2}+z\right) + f\left(\frac{x+y}{2}-z\right) - 2f\left(\frac{x+y}{2}\right) - 2f\left(z\right) \right\|$$

$$\leq \left\| \beta \left(2f\left(\frac{x+y}{2^2}+\frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2}-\frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right) \right\|$$
 (3.1)

for all $x, y, z \in X$ if and only if $f: X \to Y$ is quadraic.

Proof. Assume that $f: X \to Y$ satisfies (3.1)

Letting
$$x=y=z=0$$
 in (3.1), we get $\left\|2f(0)\right\|\leq\left|\beta\right|^{\gamma_2}\left\|2f(0)\right\|.$ So $f(0)=0$

Letting x = y = z in (3.1), we get

$$\left\| f(2x) - 4f(x) \right\| \le 0 \text{ and so } f(2x) = 4f(x) \text{ for all } x \in X.$$

Thus

$$f\left(\frac{x}{2}\right) = \frac{1}{4}f(x) \tag{3.2}$$

for all $x \in X$

It follows from (3.1) and (3.2) that:

$$\left\| f\left(\frac{x+y}{2}+z\right) + f\left(\frac{x+y}{2}-z\right) - 2f\left(\frac{x+y}{2}\right) - 2f\left(z\right) \right\|$$

$$\leq \left\| \beta \left(2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right) \right\|$$

$$= \frac{\left|\beta\right|^{\gamma_2}}{2^{\gamma_2}} \left\| \left(f\left(\frac{x+y}{2} + z\right) + f\left(\frac{x+y}{2} + z\right) - 2f\left(\frac{x+y}{2}\right) - 2f\left(z\right) \right) \right\| (3.3)$$

and so

$$f\left(\frac{x+y}{2}+z\right)+f\left(\frac{x+y}{2}-z\right)=2f\left(\frac{x+y}{2}\right)+2f(z)$$

. for all $x, y, z \in X$

The coverse is obviously true.

Lemma 3.2. A mapping $f: X \to Y$ satilies

$$\left\| 2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right\|$$

$$\leq \left\| \beta\left(f\left(\frac{x+y}{2} + z\right) + f\left(\frac{x+y}{2} - z\right) - 2f\left(\frac{x+y}{2}\right) - 2f\left(z\right) \right) \right\|$$
 (3.4)

for all $x, y, z \in X$ if and only if $f: X \rightarrow Y$ is quadratic

Proof. Assume that $f: X \to Y$ satisfies (3.4)

Letting
$$x = y = z = 0$$
 in (3.4), we get

Letting
$$x = y = z = 0$$
 in (3.4), we get $\left\| 2f(0) \right\| \le \left| \beta \right|^{\gamma_2} \left\| 2f(0) \right\|$.
So $f(0) = 0$

So
$$f(0) = 0$$

Letting x = y; z = 0 in (3.4), we get

$$\left\|4f\left(\frac{x}{2}\right)-f\left(x\right)\right\|\leq 0 \text{ and so } 4f\left(\frac{x}{2}\right)=f\left(x\right) \text{ for all } x\in X. \text{ Thus }$$

$$f\left(\frac{x}{2}\right) = \frac{1}{4}f(x) \tag{3.5}$$

for all $x \in X$

It follows from (3.4) and (3.5) that:

$$\left\| 2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right\|$$

$$= \frac{1}{2^{\gamma_2}} \left\| \left(f\left(\frac{x+y}{2} + z\right) + f\left(\frac{x+y}{2} - z\right) - 2f\left(\frac{x+y}{2}\right) - 2f\left(z\right) \right) \right\|$$

$$\leq \left\| \beta \left(f\left(\frac{x+y}{2} + z\right) + f\left(\frac{x+y}{2} - z\right) - 2f\left(\frac{x+y}{2}\right) - 2f\left(z\right) \right) \right\|$$

$$= \left| \beta \right|^{\gamma_2} \left\| \left(f\left(\frac{x+y}{2} + z\right) + f\left(\frac{x+y}{2} + z\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right) \right\|$$
(3.6)

and so

$$f\left(\frac{x+y}{2}+z\right)+f\left(\frac{x+y}{2}-z\right)=2f\left(\frac{x+y}{2}\right)+2f\left(z\right).$$

for all $x, y, z \in X$

The coverse is obviously true.

Theorem 3.3. Let $r > \frac{2\gamma_2}{\gamma_1}$ and θ be positive real numbers, and let $f: X \to Y$ is a mapping satisfying

$$\left\| f\left(\frac{x+y}{2} + z\right) + f\left(\frac{x+y}{2} - z\right) - 2f\left(\frac{x+y}{2}\right) - 2f\left(z\right) \right\|$$

$$\leq \left\| \beta \left(2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right) \right\|$$

$$+ \theta \left(\left\| x \right\|^r + \left\| y \right\|^r + \left\| z \right\|^r \right)$$
(3.7)

for all x,y,z $\in X$. Then there exists a unique quadratic mapping $h: X \to Y$ such that

$$\left\| f\left(x\right) - h\left(x\right) \right\| \le \frac{3\theta}{2^{\gamma_1 r} - 4^{\gamma_2}} \left\| x \right\|^r \tag{3.8}$$

for all $x \in X$

Proof. Letting x = y = z = 0 in (3.7), we get $||2f(0)|| \le |\beta|^{\gamma_2} ||2f(0)||$. So f(0) = 0. Letting x = y = z in (3.7), we get

$$\left\| f\left(2x\right) - 4f\left(x\right) \right\| \le 3\theta \left\| x \right\|^r. \tag{3.9}$$

for all $x \in X$. So

$$\left\| f\left(x\right) - 4f\left(\frac{x}{2}\right) \right\| \le \frac{3}{2^{\gamma_1 r}} \theta \left\| x \right\|^r$$

So for all $x \in X$. Hence

$$\left\| 4^{l} f\left(\frac{x}{2^{l}}\right) - 4^{m} f\left(\frac{x}{2^{m}}\right) \right\|$$

$$\leq \sum_{j=l}^{m-1} \left\| 4^{j} f\left(\frac{x}{2^{j}}\right) - 4^{j+1} f\left(\frac{x}{2^{j+1}}\right) \right\|$$

$$\leq \frac{3}{2^{\gamma_{1}r}} \sum_{j=l}^{m-1} \frac{4^{\gamma_{2}j}}{2^{\gamma_{1}rj}}$$

$$(3.10)$$

for all nonnegative integers m and l with m>l and all $x\in X$. It follows from (3.10) that the sequence $\left\{4^nf\left(\frac{x}{2^n}\right)\right\}$ is Cauchy sequence for all $x\in X$. Since Y is complete, the sequence $\left\{4^nf\left(\frac{x}{2^n}\right)\right\}$ coverges. So one can define te mapping $h:X\to Y$ by

$$h(x) := \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}\right)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.10), we get (3.8) It follows from (3.7) that

$$\begin{split} \left\| f \left(\frac{x+y}{2} + z \right) + f \left(\frac{x+y}{2} - z \right) - 2f \left(\frac{x+y}{2} \right) - 2f \left(z \right) \right\| \\ &= \lim_{n \to \infty} 4^{\gamma_2 n} \left\| f \left(\frac{x+y}{2^{n+1}} + \frac{z}{2^n} \right) + f \left(\frac{x+y}{2^{n+1}} - \frac{z}{2^n} \right) - 2f \left(\frac{x+y}{2^{n+1}} \right) - 2f \left(\frac{z}{2^n} \right) \right\| \\ &\leq \lim_{n \to \infty} 4^{\gamma_2 n} \left| \beta \right|^{\gamma_2} \left\| 2f \left(\frac{x+y}{2^{n+2}} + \frac{z}{2^{n+1}} \right) + 2f \left(\frac{x+y}{2^{n+2}} - \frac{z}{2^{n+1}} \right) - f \left(\frac{x+y}{2^n} \right) - f \left(\frac{z}{2^n} \right) \right\| \\ &+ \lim_{n \to \infty} \frac{4^{\gamma_2 n} \theta}{2^{\gamma_1 n r}} \left(\left\| x \right\|^r + \left\| y \right\|^r + \left\| z \right\|^r \right) \\ &= \left| \beta \right|^{\gamma_2} \left\| 2h \left(\frac{x+y}{2} + z \right) + 2h \left(\frac{x+y}{2} - z \right) - h \left(\frac{x+y}{2} \right) - h \left(z \right) \right\| \end{split}$$

for all $x, y \in X$. So

$$\left\| f\left(\frac{x+y}{2} + z\right) + f\left(\frac{x+y}{2} - z\right) - 2f\left(\frac{x+y}{2}\right) - 2f\left(z\right) \right\|$$

$$\leq \left\| \beta\left(2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right) \right\|$$

for all $x, y \in X$. By Lemma 3.1, the mapping $h: X \to Y$ is quadratic. Now, let $T: X \to Y$ be another quadratic mapping sattisfying (3.8). Then we have

$$\begin{aligned} \left\| h\left(x\right) - T\left(x\right) \right\| &= 4^{\gamma_2 n} \left\| h\left(\frac{x}{2^n}\right) - T\left(\frac{x}{2^n}\right) \right\| \\ &\leq 4^{\gamma_2 n} \left(\left\| h\left(\frac{x}{2^n}\right) - f\left(\frac{x}{2^n}\right) \right\| + \left\| h\left(\frac{x}{2^n}\right) - f\left(\frac{x}{2^n}\right) \right\| \right) \\ &\leq \frac{6.4^{\gamma_2 n}}{\left(2^{\gamma_1 r} - 4^{\gamma_2}\right) 2^{\gamma_1 n r}} \theta \left\| x \right\| \end{aligned}$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that h(x) = T(x) for all $x \in X$. This prover the uniqueness of h. Thus the mapping $h: X \to Y$ be a unique mapping satisfying (3.8).

Theorem 3.4. Let $r < \frac{2\gamma_2}{\gamma_1}$ and θ be positive real numbers, and let $f: X \to Y$ is a mapping satisfying

$$\left\| f\left(\frac{x+y}{2}+z\right) + f\left(\frac{x+y}{2}-z\right) - 2f\left(\frac{x+y}{2}\right) - 2f\left(z\right) \right\|$$

$$\leq \left\| \beta \left(2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right) \right\|$$

$$+ \theta \left(\left\| x \right\|^r + \left\| y \right\|^r + \left\| z \right\|^r \right)$$
(3.11)

for all x,y,z $\in X$. Then there exists a unique quadratic mapping $h: X \to Y$ such that

$$\left\| f\left(x\right) - h\left(x\right) \right\| \le \frac{3\theta}{4^{\gamma_2} - 2^{\gamma_1 r}} \left\| x \right\|^r \tag{3.12}$$

for all $x \in X$

Proof. Letting x = y = z = 0 in (3.11), we get $||2f(0)|| \le |\beta|^{\gamma_2} ||2f(0)||$. So f(0) = 0. Letting x = y = z in (3.11), we get

$$\left\| f\left(2x\right) - 4f\left(x\right) \right\| \le 3\theta \left\| x \right\|^r \tag{3.13}$$

. for all $x \in X$.So

$$\left\| f\left(x\right) - \frac{1}{4}f\left(2x\right) \right\| \le \frac{3\theta}{4^{\gamma_2}} \left\| x \right\|^r$$

So for all $x \in X$. Hence

$$\left\| \frac{1}{4^{l}} f\left(2^{l} x\right) - \frac{1}{4^{m}} f\left(2^{m} x\right) \right\|$$

$$\leq \sum_{j=l}^{m-1} \left\| \frac{1}{4^{j}} f\left(2^{j} x\right) - \frac{1}{4^{j+1}} f\left(2^{j+1} x\right) \right\|$$

$$\leq \frac{3\theta}{4^{\gamma_{2}}} \sum_{j=l}^{m-1} \frac{2^{\gamma_{1} r j}}{4^{\gamma_{2} j}} \left\| x \right\|^{r}$$
(3.14)

for all nonnegative integers m and l with m>l and all $x\in X$. It follows from (3.14) that the sequence $\left\{\frac{1}{4^n}f(2^nx)\right\}$ is Cauchy sequence for all $x\in X$. Since Y is complete, the sequence $\left\{\frac{1}{4^n}f(2^nx)\right\}$ coverges. So one can define the mapping $h:X\to Y$ by

$$h(x) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (3.14), we get (3.12) It follows from (3.11) that

$$\begin{aligned} & \left\| h\left(\frac{x+y}{2} + z\right) + h\left(\frac{x+y}{2} - z\right) - 2h\left(\frac{x+y}{2}\right) - 2h(z) \right\| \\ &= \lim_{n \to \infty} \frac{1}{4^{\gamma_2 n}} \left\| f\left(2^{n-1}(x+y) + 2^n z\right) + f\left(2^{n-2}(x+y) - 2^{n-1} z\right) \right\| \\ &- 2f\left(2^{n-1}(x+y)\right) - 2f\left(2^n x\right) \right\| \\ &\leq \lim_{n \to \infty} \frac{1}{4^{\gamma_2 n}} \left| \beta \right|^{\gamma_2} \left\| \left(2f\left(2^{n-2}(x+y) + 2^{n-1} z\right) + 2f\left(2^{n-2}(x+y) - 2^{n-1} z\right) - f\left(2^{n-1}(x+y)\right) - f\left(2^{n-1}\right) \right) \right\| + \lim_{n \to \infty} \frac{2^{\gamma_1 n} \theta}{4^{\gamma_2 n r}} \left(\left\| x \right\|^r + \left\| y \right\|^r + \left\| z \right\|^r \right) \\ &= \left| \beta \right|^{\gamma_2} \left\| \left(2h\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2h\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - h\left(\frac{x+y}{2}\right) - h(z) \right) \right\| \end{aligned}$$

for all $x, y \in X$. So

$$\left\| f\left(\frac{x+y}{2} + z\right) + f\left(\frac{x+y}{2} - z\right) - 2f\left(\frac{x+y}{2}\right) - 2f\left(z\right) \right\|$$

$$\leq \left\| \beta\left(2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right) \right\|$$

for all $x, y \in X$. By Lemma 3.1, the mapping $h: X \to Y$ is quadratic. Now, let $T: X \to Y$ be another quadratic mapping sattisfying (3.12). Then we have

$$\|h(x) - T(x)\| = \frac{1}{4^{\gamma_2 n}} \|h(2^n x) - T(2^n x)\|$$

$$\leq \frac{1}{4^{\gamma_2 n}} (\|h(2^n x) - f(2^n x)\| + \|h(2^n x) - f(2^n x)\|)$$

$$\leq \frac{6.2^{\gamma_1 n}}{(4^{\gamma_2 r} - 2^{\gamma_1})^{4^{\gamma_2 n r}}} \theta. \|x\|^r$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that h(x) = T(x) for all $x \in X$. This prover the uniqueness of h. Thus the mapping $h: X \to Y$ be a unique mapping satisfying (3.12).

4. QUADRATIC γ -FUNCTIONAL INEQUALITY

In This section, assume that β is a fixed complex number with $\left|\beta\right| < \frac{1}{2}$. We investigate the quadratic β -fuctional inequality (1.2) in γ -homogeneous complex Banach space.

Theorem 4.1. Let $r > \frac{2\gamma_2}{\gamma_1}$ and θ be positive real numbers, and let $f: X \to Y$ is a mapping satisfying

$$\left\| 2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right\|$$

$$\leq \left\| \beta\left(f\left(\frac{x+y}{2} + z\right) + f\left(\frac{x+y}{2} - z\right) - 2f\left(\frac{x+y}{2}\right) - 2f\left(z\right) \right) \right\|$$

$$+ \theta\left(\left\|x\right\|^r + \left\|y\right\|^r + \left\|z\right\|^r\right)$$

$$(4.1)$$

for all x,y,z $\in X$. Then there exists a unique quadratic mapping $h: X \to Y$ such that

$$\left\| f\left(x\right) - h\left(x\right) \right\| \le \frac{2^{\gamma_1 r} \theta}{2^{\gamma_1 r} - 4^{\gamma_2}} \left\| x \right\|^r \tag{4.2}$$

for all $x \in X$

Proof. Letting x = y = z = 0 in (4.1), we get $||2f(0)|| \le |\beta|^{\gamma_2} ||2f(0)||$. So f(0) = 0. Letting x = y; z = 0 in (4.1), we get

$$\left\|4f\left(\frac{x}{2}\right) - f\left(x\right)\right\| \le 2\theta \left\|x\right\|^r. \tag{4.3}$$

So for all $x \in X$. Hence

$$\left\| 4^{l} f\left(\frac{x}{2^{l}}\right) - 4^{m} f\left(\frac{x}{2^{m}}\right) \right\|$$

$$\leq \sum_{j=l}^{m-1} \left\| 4^{j} f\left(\frac{x}{2^{j}}\right) - 4^{j+1} f\left(\frac{x}{2^{j+1}}\right) \right\|$$

$$\leq 2 \sum_{j=l}^{m-1} \frac{4^{\gamma_{2}j}}{2^{\gamma_{1}rj}} \left\| x \right\|^{r}$$

$$(4.4)$$

for all nonnegative integers m and l with m>l and all $x\in X$. It follows from (4.4) that the sequence $\left\{4^nf(\frac{x}{2^n})\right\}$ is Cauchy sequence for all $x\in X$. Since Y is complete, the sequence $\left\{4^nf(\frac{x}{2^n})\right\}$ coverges. So one can define te mapping $h:X\to Y$ by

$$h(x) := \lim_{n \to \infty} 4^n f\left(\frac{x}{2^n}\right)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (4.4), we get (4.2) It follows from (4.1) that

$$\begin{aligned} \left\| 2h \left(\frac{x+y}{2^2} + \frac{z}{2} \right) + 2h \left(\frac{x+y}{2^2} - \frac{z}{2} \right) - h \left(\frac{x+y}{2} \right) - h \left(z \right) \right\| \\ &= \lim_{n \to \infty} 4^{\gamma_2 n} \left\| 2f \left(\frac{x+y}{2^{n+2}} + \frac{z}{2^{n+1}} \right) + 2f \left(\frac{x+y}{2^{n+2}} - \frac{z}{2^{n+1}} \right) - f \left(\frac{x+y}{2^{n+1}} \right) - f \left(\frac{z}{2^n} \right) \right\| \\ &\leq \lim_{n \to \infty} 4^{\gamma_2 n} \left| \beta \right|^{\gamma_2} \left\| \left(f \left(\frac{x+y}{2^{n+1}} + \frac{z}{2^n} \right) + f \left(\frac{x+y}{2^{n+1}} - \frac{z}{2^n} \right) - 2f \left(\frac{x+y}{2^{n+1}} \right) - 2f \left(\frac{z}{2^n} \right) \right) \right\| \\ &+ \lim_{n \to \infty} \frac{4^{\gamma_2 n} \theta}{2^{\gamma_1 n r}} \left(\left\| x \right\|^r + \left\| y \right\|^r + \left\| z \right\|^r \right) \\ &= \left| \beta \right|^{\gamma_2} \left\| h \left(\frac{x+y}{2} + z \right) + h \left(\frac{x+y}{2} - z \right) - 2h \left(\frac{x+y}{2} \right) - 2h \left(z \right) \right\| \end{aligned}$$

for all $x, y \in X$. So

$$\begin{aligned} \left\| 2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right\| \\ & \leq \left\| \beta\left(f\left(\frac{x+y}{2} + z\right) + f\left(\frac{x+y}{2} - z\right) - 2f\left(\frac{x+y}{2}\right) - 2f\left(z\right) \right) \right\| \end{aligned}$$

for all $x,y\in X$. By Lemma 3.2, the mapping $h:X\to Y$ is quadratic. Now, let

 $T: X \to Y$ be another quadratic mapping sattisfying (4.2). Then we have

$$\begin{aligned} \left\| h\left(x\right) - T\left(x\right) \right\| &= 4^{\gamma_{2}n} \left\| h\left(\frac{x}{2^{n}}\right) - T\left(\frac{x}{2^{n}}\right) \right\| \\ &\leq 4^{\gamma_{2}n} \left(\left\| h\left(\frac{x}{2^{n}}\right) - f\left(\frac{x}{2^{n}}\right) \right\| + \left\| h\left(\frac{x}{2^{n}}\right) - f\left(\frac{x}{2^{n}}\right) \right\| \right) \\ &\leq \frac{2 \cdot \theta}{\left(2^{\gamma_{1}r} - 4^{\beta_{2}}\right) 2^{\gamma_{1}r}} \cdot \frac{4^{\gamma_{2}n}}{2^{\gamma_{1}nr}} \left\| x \right\|^{r} \end{aligned}$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that h(x) = T(x) for all $x \in X$. This prover the uniqueness of h. Thus the mapping $h: X \to Y$ be a unique mapping satisfying (4.2).

Theorem 4.2. Let $r < \frac{2\gamma_2}{\gamma_1}$ and θ be positive real numbers, and let $f: X \to Y$ is a mapping satisfying

$$\left\| 2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right\|$$

$$\leq \left\| \beta \left(f\left(\frac{x+y}{2} + z\right) + f\left(\frac{x+y}{2} - z\right) - 2f\left(\frac{x+y}{2}\right) - 2f\left(z\right) \right) \right\|$$

$$+ \theta \left(\left\| x \right\|^r + \left\| y \right\|^r + \left\| z \right\|^r \right)$$

$$(4.5)$$

for all x,y,z $\in X$. Then there exists a unique quadratic mapping $h: X \to Y$ such that

$$\left\| f\left(x\right) - h\left(x\right) \right\| \le \frac{2^{\gamma_1 r} \theta}{4^{\gamma_2} - 2^{\gamma_1 r}} \left\| x \right\|^r \tag{4.6}$$

for all $x \in X$

Proof. Letting x = y = z = 0 in (4.5), we get $||2f(0)|| \le |\beta|^{\gamma_2} ||2f(0)||$. So f(0) = 0. Letting x = y; z = 0 in (4.5), we get

$$\left\|4f\left(\frac{x}{2}\right) - f\left(x\right)\right\| \le 2\theta \left\|x\right\|^r \tag{4.7}$$

. So for all $x \in X$. for all $x \in X$. So

$$\left\| f\left(x\right) - \frac{1}{4}f\left(2x\right) \right\| \le \frac{2^{(\gamma_1 + 1)r}\theta}{4^{\gamma_2}} \left\| x \right\|^r$$

Hence

$$\left\| \frac{1}{4^{l}} f\left(2^{l} x\right) - \frac{1}{4^{m}} f\left(2^{m} x\right) \right\|$$

$$\leq \sum_{j=l}^{m-1} \left\| \frac{1}{4^{j}} f\left(2^{j} x\right) - \frac{1}{4^{j+1}} f\left(2^{j+1} x\right) \right\|$$

$$\leq \sum_{j=l}^{m-1} \frac{2^{(\gamma_{1}+1)jr}}{4^{\gamma_{2}j}} \left\| x \right\|^{r}$$
(4.8)

for all nonnegative integers m and l with m>l and all $x\in X$. It follows from (4.8) that the sequence $\left\{\frac{1}{4^n}f\left(2^nx\right)\right\}$ is Cauchy sequence for all $x\in X$. Since Y is complete, the sequence $\left\{\frac{1}{4^n}f\left(2^nx\right)\right\}$ coverges. So one can define te mapping $h:X\to Y$ by

$$h(x) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l=0 and passing the limit $m \to \infty$ in (4.8), we get (4.6) It follows from (4.5) that

$$\begin{aligned} \left\| 2h \left(\frac{x+y}{2^2} + \frac{z}{2} \right) + 2h \left(\frac{x+y}{2^2} - \frac{z}{2} \right) - h \left(\frac{x+y}{2} \right) - h \left(z \right) \right\| \\ &= \lim_{n \to \infty} \frac{1}{4^{\gamma_2 n}} \left\| 2f \left(2^{n-2}(x+y) + 2^{n-1}z \right) + 2f \left(2^{n-2}(x+y) - 2^{n-1}z \right) \right\| \\ &- f \left(2^{n-1}(x+y) \right) - f \left(2^n z \right) \right\| \\ &\leq \lim_{n \to \infty} \frac{1}{4^{\gamma_2 n}} \left| \beta \right|^{\gamma_2} \left\| f \left(2^{n-1}(x+y) + 2^n z \right) + f \left(2^{n+1}(x+y) - 2^n z \right) \right\| \\ &- 2f \left(2^{n-1}x + y \right) - 2f \left(2^n z \right) \right\| \\ &+ \lim_{n \to \infty} \frac{2^{\gamma_1 n r} \theta}{4^{\gamma_2 n}} \left(\left\| x \right\|^r + \left\| y \right\|^r + \left\| z \right\|^r \right) \\ &= \left| \beta \right|^{\gamma_2} \left\| h \left(\frac{x+y}{2} + z \right) + h \left(\frac{x+y}{2} - z \right) - 2h \left(\frac{x+y}{2} \right) - 2h \left(z \right) \right\| \end{aligned}$$

for all $x, y \in X$. So

$$\left\| 2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f\left(z\right) \right\|$$

$$\leq \left\| \beta\left(f\left(\frac{x+y}{2} + z\right) + f\left(\frac{x+y}{2} - z\right) - 2f\left(\frac{x+y}{2}\right) - 2f\left(z\right) \right) \right\|$$

for all $x, y \in X$. By Lemma 3.2, the mapping $h: X \to Y$ is quadratic. Now, let $T: X \to Y$ be another quadratic mapping sattisfying (4.6). Then we have

$$\begin{aligned} \left\| h\left(x\right) - T\left(x\right) \right\| &= \frac{1}{4^{\gamma_{2}n}} \left\| h\left(2^{n}x\right) - T\left(2^{n}x\right) \right\| \\ &\leq \frac{1}{4^{\gamma_{2}n}} \left(\left\| h\left(2^{n}x\right) - f\left(2^{n}x\right) \right\| + \left\| h\left(2^{n}x\right) - f\left(2^{n}x\right) \right\| \right) \\ &\leq \frac{2 \cdot \theta}{\left(4^{\gamma_{2}} - 2^{\gamma_{1}r}\right) 2^{\gamma_{1}r}} \cdot \frac{2^{\gamma_{1}nr}}{4^{\gamma_{2}n}} \left\| x \right\|^{r} \end{aligned}$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that h(x) = T(x) for all $x \in X$. This prover the uniqueness of h. Thus the mapping $h : X \to Y$ be a unique mapping satisfying (4.6).

Remak 5.11

If β is a real number such that $-1 < \beta < 1$ and is Y is a γ_2 -homogeneous real Banach space, then all the assertions in this sections remain valid

5. CONCLUSION

In this paper, I have shown that the solutions of the first and second quadratic β -functional inequalities are quadratic mappings. The Hyers-Ulam stability for these given from theorems. These are the main results of the paper , which are the generalization of the results [18, 31, 32] .

REFERENCES

- [1] T. Aoki, on the stability of the linear transformation in Banach space, J. Math. Soc. Japan 2(1995), 64-66. . .
- [2] J.Bae and W. Park, Approximate bi-homomorphisms and bi-derivations in C^* -ternary algebras, Bull. Korean Math. Soc, 47 (2010) 195-209. . ,

[3] A.Bahyrycz, M. Piszczek, Hyers stability of the Jensen function equation, Acta Math. Hungar.,142 (2014),353-365. . ,

- [4] M.Balcerowski, On the functional equations related to a problem of z Boros and Z. Dróczy, Acta Math. Hungar.,138 (2013), 329-340. . ..
- [5] P.W. Cholewa, Remarks on the stability of functional eqution, Aequationes Math. 27(1984), 76-86.
- [6] W. Fechner, Stability of a functional inequlities associated with the Jordan-von Newmann functional equation, Aequtiones Math 71(2006), 149-161. . ,.
- [7] A. Gilányi Eine zur Parallelogrammaleichung ä Ungleichung, Aeq. Math. 62 (2001) 303-309.
- [8] A. Gilányi On u problemby K. Nikodem, Math. Inequal. Appl. 5 (2002) 707-710 .
- [9] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA. 27 (1941) 222-224.
- [10] P. Găvruta, A generalization of the Hyers-Ulam -Rassias stability. Locally bounded linear topological spaces. *Proc. Imp. Acad. Tokyo*, 18(10):588–594, 1942.
- [11] S.Jung, On the quadrtic functional equation modul modulo a subgroup, Indian J. Pure Appl. Math. 36 (2005) 441-450.
- [12] C. Park Quadrtic β -functional inequalites and equation, J. Nonlinear Anal. Appl. 2014 (2014). .
- [13] C. Park Functional equation in Banach modules, Indian J. Pure Anal. Appl Math.33 (2002) 1077-1086. .
- [14] C. Park Multilinear mappings in Banach modules over a C^* -algebra, Indian J. Pure Appl Math. 35 (2004) 183-192. .
- [15] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan -von Neuman- type additive functional equational J. Inequal. Appl. J, (2007) Articcle ID 41820, 13 pages.
- [16] I.-i. EL-Fassi. Solution and approximation of radical quintic functional equation related to quintic mapping in quasi- β -Banach spaces. *Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM*, pages 1–13, 2018.

- [17] Th.M Rassias, On the stability of the linear mappings in Banach space, Proc. Amer. Math. So. 72 (1978) 297-300.
- [18] Ly Van An. Hyers-Ulam stability of functional inequalities with three variable in Banach spaces and Non-Archemdean Banach spaces International Journal of Mathematical Analysis Vol.13, 2019, no. 11. 519-53014), 296-310. https://doi.org/10.12988/ijma.2019.9954
- [19] N. J. Kalton, N. T. Peck, and J. W. Roberts. *An F-space sampler*, volume 89 of *London mathematical society lecture note series*. Cambridge university press, 1984.
- [20] P. Kaskasem, C. Klin-eam, and Y. J. Cho. On the stability of the generalized Cauchy-Jensen set-valued functional equations. *J. Fixed Point Theory Appl.*, 20:1–14, 2018.
- [21] L. Maligranda. Tosio Aoki (1910-1989). In *International symposium on Banach and function spaces: 14/09/2006-17/09/2006*, pages 1–23. Yokohama Publishers, 2008.
- [22] A. Najati and G. Z. Eskandani. Stability of a mixed additive and cubic functional equation in quasi-Banach spaces. *J. Math. Anal. Appl.*, 342(2):1318–1331, 2008.
- [23] A. Najati and M. B. Moghimi. Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces. *J. Math. Anal. Appl.*, 337(1):399–415, 2008.
- [24] S. M. Ulam. *Problems in modern mathematics*. Wiley, 1964.
- [25] S. M. Ulam, A Collection of the mathematical Problems Interscience Publ New York, 1960.
- [26] F. ,Skof, propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983) 113-129. Collection of the mathematical Problems Interscience Publ New York, 1960.
- [27] J. R $\ddot{a}tz$, On inqualities associated with the Jordan Neumann functional equation, aequationes Math. 66 (2003) 191-200.
- [28] S. Rolewicz, Metric linear space, PWN-Polish Scientific Publishersm, Warsaw, 1972. .

[29] T. Z. Xu, J. M. Rassias, and W. X. Xu. Generalized Hyers-Ulam stability of a general mixed additive-cubic functional equation in quasi-Banach spaces. *Acta Math. Sin. (Engl. Ser.)*, 28(3):529–560, 2012.

- [30] Z. Daróczy, Gy. Mackasa, Afunction equation involving comparable weighted quasi-arthmetric means, Acta Math Hungar. ,138 (2013), 329-340. 1 . .
- [31] $Chookil^a$, Sang Og Kim^b , Jung Rye $Lee^{c,*}$, Dong Yun $Shin^d$ Quadraic ρ functional inequalities in β -homogeueous normed Space Int. J. Nonlinear Anal. Appl. 6 (2015) No. 2, 21-26 ISSN: 2008-6822 (electronic) . .
- [32] Ly Van An. Hyers-Ulam stability of additive β-functional inequalities with three variable in Non-Archemdean Banach spaces and complex Banach space International Journal of Mathematical Analysis Vol.14, 2020, no. 5, 219-239. https://doi.org/10.12988/ijma.2019.9954