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Abstract 

In this paper, in an ideal delta space ),,,( IX  , we introduce *L -perfect, 
*R -perfect and *C - perfect sets in an ideal delta spaces and study their 

properties. 
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1. Introduction and Preliminaries 

The set  (delta) has been introduced in topological space by C.Chottopadhyay and 

U.K.Roy [2]. In [2] and [1] C.Chottopadhyay have discussed the properties of this set 

in detail. The contributions of Hamlet and Jankovic[3-6] in ideal topological spaces 

initiated the generalization of some important properties in general topology via 

topological ideals. Shyampada Modak [7] introduced ideal delta space. By a space

),( X , the system of open neighborhoods of x is denoted by }:{)( UxUxN   . 

For a given subset A of a space ),( X , )(Acl and )int(A are used to denote the closure 

of A and interior of A , respectively, with respect to the topology. 

 A subset A of a topological space ),( X is called a  - set [2] if 

))(int())(int( AclAcl  . This collection of all  - sets in a topological space ),( X is 

denoted by
 . This collection does not form a topology because arbitrary union of  - 

sets may not be a  - set in general [2]. Furthermore, it is intersecting that the finite 

union (intersection) of - sets is again a  - set [1]. As ,  then intersection of an 

open with a - set is a - set. Let A be a subset of a topological space ).,( X The  - 

closure of A [1] is denoted as )(Acl and is defined as intersection of all - sets 

containing A . 
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A nonempty collection I of subsets of a set X is said to be an ideal on X , if it 

satisfies the following two conditions: (i) If IA and ,AB  then IB (heredity); 

(ii) If IA and IB , then IBA  (finite addition). An ideal topological space (or 

ideal space) ),,( IX  means a topological space ),( X with an ideal I defined on X . 

Let ),( X  be a topological space with an ideal I defined on .X Then for any set A of

,X IUAXxIA  /{),(*  for every )}(xNU  is called the local function of A
with respect to I and .If there is no ambiguity, we will write )(* IA or simply *A for 

),(* IA . Also 
** )( AAAcl  defines a Kuratowski closure operator [5] for topology 

)(* I (or simply * which is finer than  .An ideal I on a space ),( X is said to be 

condense ideal if and only if }{  I . *X is always a proper subset of X . Also 
*XX  if and only if the ideal is condense. 

Let ),( X  be a topological space and I be an ideal on X , then ),,,( IX  is called an 

ideal delta space[7]. Then for any set A of X , ,/{),(* IUAXxIA x   for 

every  - set xU containing }x . This is simply called  - local function and simply 

denoted as *A . Also 
 ** )( AAAcl  defines a Kuratowski closure operator [7] for 

a topology )(* I (or simply  * ) which is finer than  . 

 

Lemma 1. (see [7]) Let ),,,( IX  be an ideal delta space, and let BA, be subsets of

X . Then  

(i)   *
  

(ii)  ** BABA    

(iii) )()( 2

*

1

*

21 IAIAII    

(iv) 
** AA 
 

(v) 
 *** )( BABA      

(vi) for every 
 *** )()(, JAAJAIJ   

 

 A perfect set in topological space is a set without isolated points (dense in 

itself) and closed. Hayashi introduced * - perfect sets [9] in ideal topological spaces. 

Later, Manoharan[8] introduced *R - perfect sets. Muhammad Shabir [10] introduced 

and studied soft topological spaces. Rodyna A.Hosny [11] extended the idea of 

perfect sets to soft ideal topological spaces. In this Chapter, we introduce, *L - perfect 

sets, *R - perfect sets and *C - perfect sets, study their properties. 
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Definition 2. A subset A of an ideal space ),,( IX  is said to be  

(i) * - closed [5] if AA *
 

(ii) * - dense in itself [9] if 
*AA  

(iii) * - perfect [9] if *AA   

 

Definition 3. (See [8]) Let ),,( IX  be an ideal topological space. A subset A of X is 

said to be  

(i) *L - perfect if IAA  *    

(ii) *R - perfect if IAA *  

(iii) *C - perfect if A is both *L - perfect and *R - perfect 

 

 The collection of *L - perfect sets, *R - perfect sets and *C - perfect sets in

),,( IX   is denoted by L, R and C   respectively.    

 

2. 
*L - perfect sets, 

*R - perfect sets and 
*C - perfect sets 

 In this section, we define three collections of subsets L  , R  and C  in an 

ideal delta space and study some their properties. 

 

Definition 4. A subset A of an ideal delta space ),,,( IX  is said to be  

(i)  * - closed if AA *
 

(ii) * - dense in itself if 
*AA  

(iii) * - perfect if *AA   

 

Definition 5. Let ),,,( IX  be an ideal delta space. A subset A of X is said to be  

(i) *L - perfect if IAA  *    

(ii) *R - perfect if IAA *  

(iii) *C - perfect if A is both *L - perfect and *R - perfect 

. 

 The collection of *L - perfect sets, *R - perfect sets and *C - perfect sets in

),,,( IX   is denoted by L  , R  and C     respectively. 
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Remark 6. If }{I , then  

(i) L  = }}{:{ *   IAAXA  

           = }:{ *   AAXA  

           = }:{ *AAXA   

           = The collection of * - dense in itself 

(ii) R   = }}{:{ *   IAAXA    

            = }:{ *   AAXA  

            = }:{ * AAXA  
  

            = The collection of all  * - closed sets. 

(iii) C  = IAAXA  *:{ and }* IAA 
 

            = 
*:{ AAXA  and }* AA 

 

            =  }:{ *AAXA   

            = The collection of * - perfect sets. 

 

Remark 7. If I = P )(X , then  xUAXxA :{*  P )(X for every  - set xU
containing }x =  . Which implies L  =  IAAXA *:{  P )}(X = 

 AXA :{  P )}(X = P )(X .     

 The following Theorem 8 shows that the relation between * - perfect set and
*C - perfect set. 

 

Theorem 8. In an ideal delta space ),,,( IX  , every * - perfect set is
*C - perfect. 

 

Proof. Let A be an * - perfect set. Then *AA  ,which implies 

IAAAA   **
. Therefore A is both *R - perfect and *L - perfect and 

hence A is *C - perfect.  

 

 The following Example 9 shows that the converse of the above Theorem 8 is 

not true. 
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Example 9. Let ),,,( IX  be an ideal delta space with },,,{ dcbaX  , 

}},,,{},,{},{,{ Xcbabac  , }}{,{ aI  . Then 

}},,,{},,,{},,{},,{},{,{ Xdbacbadcbac   . The set }{a is both *R - perfect and 
*L - perfect and hence *C - perfect but not a * - perfect set. 

 

 The following Theorem 10 gives the relation between  * - closed set and *R - 

perfect. 

 

Theorem 10. In an ideal delta space ),,,( IX  , every  * - closed set is *R - perfect.        

          

Proof. Let A  be a  * - closed set. Then AA *
. Therefore IAA  *

 and hence

A is an *R - perfect. 

 

Corollary 11. In an ideal delta space ),,,( IX  , 

(i) X  and  are *R - perfect 

(ii) every  - closed set is *R - perfect  

(iii) every * - closed set is *R - perfect  

(iv) every  - closed set is *R - perfect  

 

Proof.  The proof follows from Theorem 10. 

 

 The following Example shows that the converses of Theorem 10 and 

Corollary 11 are not true. 

 

Example 11. Let ),,,( IX  be an ideal delta space with },,,{ dcbaX  , 

}},,,{},,{},{,{ Xcbabac  , }}{,{ aI  . Then 

}},,,{},,,{},,{},,{},{,{ Xdbacbadcbac   . The set },,{ dcb is *R - perfect  but not 

 - closed, * - closed,  - closed and  * - closed 

 

Theorem 12. If a subset A of an ideal delta space ),,,( IX   is *C - perfect, then 

IAA  * . 
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Proof. Since A is both *L - perfect and *R - perfect, IAA  * and IAA *
.By 

finite additive property of ideals, IAAAA  )()( ** 
, which implies IAA  * .    

 

The following Theorem 13 shows that every element of an ideal is *C - 

perfect. 

 

Theorem 13. If a subset A of an ideal delta space ),,,( IX   is such that IA , then 

A is *C - perfect. 

 

Proof. Since IA , *A and 
** AA 
,which implies   *A , IAAA  * and 

IAA  *
. Then A is both *L - perfect and *R - perfect. Therefore A is *C - 

perfect.      

 

 Corollary 14. Let A be an subset of an ideal delta space ),,,( IX  . Consider the 

following 

(i) If IA , then every subset of A is *C - perfect.   

(ii) If A is *R - perfect, then AA * is *C - perfect. 

(iii) If A is *L - perfect, then *AA is *C - perfect.        

(iv) A is *C - perfect, then *AA is *C - perfect.  

 

Proof. The Proof follows from Theorem 13. 

 

Theorem 15. In an ideal delta space ),,,( IX   , every * - dense in itself set is an *L
- perfect set. 

 

Proof. Let A be a * - dense in itself set of X . Then 
*AA . Therefore 

IAA  *
, which implies A  is an *L - perfect set. 

 

 The following Remark 16 shows that the converse of Theorem 15 need not be 

true.  
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Remark 16. The members of an ideal delta space are *L - perfect, but the non-empty 

members of the ideal are not * - dense in itself. Therefore the converse of Theorem 15 

need not be true. 

 

 Theorem 17. In an ideal delta space ),,,( IX   ,  

(i) empty set is an *L - perfectset  

(ii) X is an *L - perfect set if the ideal is condense. 

 

Proof.(i) Since I  *
, the empty set is an *L - perfect. (ii) We know that 

*XX  if and only if the ideal I is condense. Then IXX  *
, which implies

X is an *L - perfect set 

 

3. Main Results 

 In this section, we prove that finite union and intersection of *R - perfect sets 

are again *R - perfect set. Using these results, we obtain a new topology for the finite 

topological space which is finer than  * - topology. 

 In ideal delta spaces, usually BA implies
 ** BA  . We observe that there 

are some sets A and B such that BA but  ** BA   

 

Example 18. Let ),,,( IX   be an ideal delta space with },,,{ dcbaX  , 

}},,,{},,{},{,{ Xcbabac  , }},,{},,{},,{},,{},{},{},{,{ dcadcdacadcaI  . Then

}},,,{},,,{},,{},,{},{,{ Xdbacbadcbac   . Here },{ dbA  and },,{ dcbB  are 

such that BA but },,{** dbaBA  
           

 

Theorem 19. . Let ),,,( IX   be an ideal delta space. Let A and B be two subsets of 

X  such that BA and  ** BA  , then  

(i) B is *R - perfect if A is *R - perfect 

(ii) A is *L - perfect if B is *L - perfect  

 

Proof. (i) Let A  be an *R - perfect set. Then IAA  * .Now 

AABABB   ***
. By heredity property of ideals, IBB * . Hence B is

*R - perfect. 
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(ii) Let B  be an *L - perfect set. Then IBB  * .Now 
 *** BBBAAA  . 

By heredity property of ideals, IAA * . Hence A is *L - perfect. 

 

Corollary 20.  Let ),,,( IX   be an ideal delta space. Let A and B be two subsets of 

X  such that )(* AclBA  , then 

(i) B is *R - perfect if A is *R - perfect 

(ii) A is *L - perfect if B is *L - perfect  

 

Proof. Since )(* AclBA  , 
 ********** )()())(( AAAAAAclBA  . Hence  ** BA  . 

Therefore the result follows from Theorem 19. 

 

Theorem 21. Let A be an subset of an ideal delta space ),,,( IX   such that A is *L - 

perfect and *AA is *R - perfect, then both A  and *AA are *C - perfect.   

 

Proof. Since A is *L - perfect, IAA  * ,by lemma1.(vi) for every 
 *** )()(, JAAJAIJ  . Therefore )()( ***  AAAAAAA  , 

which implies 
 *** )( AAA  . Therefore AAA  *

with 
 *** )( AAA  , By 

Theorem 19 A is *R - perfect if *AA is *R - perfect  

and *AA is *L - perfect if A is *L - perfect. Hence A is *R - perfect and *AA is 
*L - perfect. Therefore A and *AA are *C - perfect. 

 

Theorem 22. If a subset A  of an ideal delta space ),,,( IX   is
*R - perfect and *A is

*L - perfect, then *AA is *L - perfect. 

 

Proof. Since A is *R - perfect, IAA * ,by lemma1.(vi) for every 
 *** )()(, JAAJAIJ  . Therefore 

 ******** ))(()()(( AAAAAAA  ,this implies 
 **** )()( AAA  . 

Therefore, we have AAA  *
with 

 *** )( AAA  . By Theorem 19 (ii), *AA
is *L - perfect if *A is *L - perfect. Hence *AA is *L - perfect.     
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Theorem 23. If A and B are *R - perfect sets, then BA is an *R - perfect set. 

 

Proof. Let A and B be *R - perfect sets. Then IAA * and IBB * . By finite 

additive property of ideals IBBAA  )()( ** 
. Since 

)()()()( **** BBAABABA  
, by heredity property of ideal

IBABA  )()( ** 
. Hence IBABA  )()( *

. Therefore BA  is an *R
- perfect set. 

 

Corollary 24. Finite union of *R - perfect sets is an *R - perfect set. 

 

Proof. The proof follows from Theorem 23. 

 

Theorem 25. If A and B are *L - perfect sets, then BA is an *L - perfect set. 

Proof. Since A and B are *L - perfect sets, IAA  * and IBB  * . Hence by 

finite additive property of ideals IBBAA  )()( ** 
. Since 

)()()()( ****  BBAABABA  , by heredity property of ideal

IBABA  )()( ** 
. This proves BA  is an *L - perfect set. 

 

Corollary 26. Finite union of *L - perfect sets is an *L - perfect set. 

 

Proof . The proof follows from Theorem 25. 

 

Theorem 27. If A and B are *R - perfect sets, then BA is an *R - perfect set.  

 

Proof. Suppose that A and B are *R - perfect sets. Then IAA  * and IBB  * . 

By finite additive property of ideals IBBAA  )()( ** 
.Since

)()()()( **** BBAABABA   , by heredity property

IBABA  )()( **  . Also IBABABABA  )()()()( ***  . 

This proves the result.  

 

Corollary 28. Finite intersection of *R - perfect sets is an *R - perfect set. 
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Proof. The proof follows from Theorem 27.  

 

Theorem 29. Finite union of *C - perfect sets is a *C - perfect set. 

 

Proof. From Corollaries 24 and 26, finite union of *C - perfect sets is a *C - perfect 

set. 

 

Theorem 30. If ),,,( IX   is an ideal delta space with X being finite, then the 

collection of *R sets forms a topology which is finer than the topology of  * - closed 

sets. 

 

Proof. By corollary 11, X  and  are *R - perfects. By corollary 24. Finite union of
*R - perfect sets is an *R - perfect set and by corollary 28 finite intersection of *R - 

perfect sets is *R - perfect set. Hence the collection R  is a topology if X is finite. 

Also by Theorem 10, every  * - closed set is *R - perfect. Hence the topology R  is 

finer than the topology of  * - closed sets. 

 

Theorem 31. In an ideal delta space ),,,( IX  ,(  * - closed set)  I  R   . 

 

Proof. The proof follows from Theorem 10 and 13. 

 

 The following Example 32 shows that (  * - closed set)  I  R  . 

 

Example 32. Let ),,,( IX   be an ideal delta space with },,,{ dcbaX  , 

}},,,{},,{},{,{ Xcbabac  , }}{,{ aI  . Then  * - closed set = 

}},,,{},,,{},,{},,{},,{},{},{,{ Xdcadbadcdabada and R   = 

}},,,{},,,{},,,{},,{},,{},,{},{},{},{,{ Xdcbdcadbadcdbbadba . Hence clearly (  * - 

closed set)  I  R  . 

 

Theorem 33. Let ),,,( IX   be an ideal delta space and XA . Then the set A is 
*R - perfect if and only if AAF  *

implies that IF . 
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Proof. Assume that A is an *R - perfect set. Then IAA * . By heredity property of 

ideals, every set AAF  *
in X is also in I . Conversely assume that AAF  *

in 

X implies that IF . Since AA * is a subset of itself, by assumption IAA * . 

Hence A is *R - perfect. 

 

Theorem 34. Let ),( X be a topological space and XA . Let 1I and 2I be two ideals 

in X with 21 II  . Then A is *R - perfect with respect to 2I if it is *R - perfect with 

respect to 1I . 

 

Proof. Since 21 II  , )()( 1

*

2

* IAIA   , by lemma 1 (iii). Let A be *R - perfect with 

respect to 1I . Then 11

* )( IAIA  . Also AIAAIA  )()( 1

*

2

*  . Hence by 

heredity property of ideals 211

* )( IIAIA  . Therefore A is *R - perfect with 

respect to 2I . 

 

4.
*R - topology  

By corollary 10 and Theorem 27, we observe that the collection R   satisfies the 

conditions of being a basis for some topology and it will be called as ),(* IR   . We 

define ),(* IR   = )},(/ * IRAXXA   on a non empty set X . Clearly

),(* IR   is a topology if X is finite. The members of the collection ),(* IR   will 

be called *R - open sets. If there is no confusion about the topology  and ideal I , 

then we call ),(* IR   as *R - topology when X is finite.  

 

Definition 35. A subset A of an ideal delta topological space ),,,( IX  is said to be
*R - closed if it is a complement of an *R - open set. 

 

Definition 36. Let A be a subset of an ideal delta space ),,,( IX  . One defines *R -

interior of the set A as the largest *R - open set contained in A . One will denote *R -

interior of the set A by *R - )int(A . 

 

Definition 37. Let A be a subset of an ideal delta space ),,,( IX  . A point Ax is 

said to be an *R -interior point of A  if there exist an *R - open set U of x such that 

AUx  . 
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Definition 38. Let ),,,( IX  be an ideal delta space and Xx . One defines *R -

neighborhood of x  as an *R - open set containing x . One denotes the set of all *R -

neighborhood of x by *R - )(xN . 

 

Theorem 39. In an ideal delta space ),,,( IX  , every  * - open set is *R - open set. 

 

Proof. Let A  be a  * - open set. Therefore AX  is  * - closed set. This implies

AX  is an *R - closed set. Hence A is an *R - open set. 

 

Corollary 40. The topology ),(* IR   on a finite set X is finer than the topology 

),(* I  . 

 

Proof. The proof follows from theorem 39. 

 

Corollary 41. For any subset A of an ideal delta space ),,,( IX  , )(int A is an *R - 

open set. 

 

Proof. The proof follows from Theorem 39. 

 

Remark 42. (i) Since every  - open set is an *R - open set, every - neighborhood U
of a point Xx is an *R neighborhood of x . 

(ii) If Xx is an  - interior point of a subset A  of X , then x is an *R -interior point 

of A . 

(iii) From (ii), we have 


** )(int)(int RAA  - )int(A , where *int denotes interior 

of A with respect to the topology  * . 

 

Theorem 43. Let A and B be subsets of an ideal delta space ),,,( IX  with X being 

finite. Then the following properties hold. 

(i) 
*R - )int(A = XUU  /{ andU is an *R - open set} . 

(ii) *R - )int(A is the largest *R - open set of X contained in A . 

(iii) A is *R - open if and only if A = *R - )int(A .  
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(iv) *R - *int(R - ))int(A = *R - )int(A . 

(v) If BA , then *R - )int(A *R - )int(B . 

 

Proof. The proof follows from Definition 35,36 and 37. 

 

Definition 44. Let A be a subset of an ideal delta space ),,,( IX  . One defines *R - 

closure of the set A as the smallest *R -closed set containing A . One will denote *R - 

closure of a set A by *R - )(Acl . 

 

Remark 45. For any subset A of an ideal delta space ),,,( IX  ,
*R - )(Acl

)()(* AclAcl 
  . 

 

Theorem 46. Let A and B be subsets of an ideal delta space ),,,( IX  with X being 

finite. Then the following properties hold. 

(i) 
*R - )(Acl = FAF  /{ and F is *R -closed set} . 

(ii) A is *R -closed if and only if A = *R - )(Acl . 

(iii) 
*R -

*(Rcl - ))(Acl = *R - )(Acl . 

(iv) If BA , then *R - )(Acl  *R - )(Bcl . 

 

Proof. The proof follows from Definition 44. 

 

Theorem 47. Let A be a subset of an ideal delta space ),,,( IX  . Then the following 

properties hold. 

(i) 
*R - )int( AX  = X *R - )(Acl . 

(ii) 
*R - )( AXcl  = X *R - )int(A . 

 

Proof. The proof follows from Definitions 35,36 and 44. 
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