Some New Sets in Ideal Delta Space

T. Gurunathan

Department of Mathematics, Sri Kaliswari College (Autonomous), Sivakasi-626130, Tamilnadu, India

Abstract

In this paper, in an ideal delta space $(X, \tau, \tau^{\delta}, I)$, we introduce $L^{*\delta}$ -perfect, $R^{*\delta}$ -perfect and $C^{*\delta}$ - perfect sets in an ideal delta spaces and study their properties.

Keywords: $R^{*\delta}$ - perfect, $L^{*\delta}$ - perfect, $R^{*\delta}$ - topology

1. Introduction and Preliminaries

The set δ (delta) has been introduced in topological space by C.Chottopadhyay and U.K.Roy [2]. In [2] and [1] C.Chottopadhyay have discussed the properties of this set in detail. The contributions of Hamlet and Jankovic[3-6] in ideal topological spaces initiated the generalization of some important properties in general topology via topological ideals. Shyampada Modak [7] introduced ideal delta space. By a space (X, τ) , the system of open neighborhoods of x is denoted by $N(x) = \{U \in \tau : x \in U\}$. For a given subset A of a space (X, τ) , cl(A) and int(A) are used to denote the closure of A and interior of A, respectively, with respect to the topology.

A subset A of a topological space (X,τ) is called a δ - set [2] if int $(cl(A)) \subset cl(int(A))$. This collection of all δ - sets in a topological space (X,τ) is denoted by τ^{δ} . This collection does not form a topology because arbitrary union of δ sets may not be a δ - set in general [2]. Furthermore, it is intersecting that the finite union (intersection) of δ - sets is again a δ - set [1]. As $\tau \subset \tau^{\delta}$, then intersection of an open with a δ - set is a δ - set. Let A be a subset of a topological space (X,τ) . The δ closure of A [1] is denoted as $cl_{\delta}(A)$ and is defined as intersection of all δ - sets containing A. A nonempty collection I of subsets of a set X is said to be an ideal on X, if it satisfies the following two conditions: (i) If $A \in I$ and $B \subseteq A$, then $B \in I$ (heredity); (ii) If $A \in I$ and $B \in I$, then $A \cup B \in I$ (finite addition). An ideal topological space (or ideal space) (X, τ, I) means a topological space (X, τ) with an ideal I defined on X. Let (X, τ) be a topological space with an ideal I defined on X. Then for any set A of X, $A^*(I, \tau) = \{x \in X / A \cap U \notin I$ for every $U \in N(x)\}$ is called the local function of A with respect to I and τ . If there is no ambiguity, we will write $A^*(I)$ or simply A^* for $A^*(I, \tau)$. Also $cl^*(A) = A \cup A^*$ defines a Kuratowski closure operator [5] for topology $\tau^*(I)$ (or simply τ^* which is finer than τ . An ideal I on a space (X, τ) is said to be condense ideal if and only if $\tau \cap I = \{\phi\}$. X^* is always a proper subset of X. Also $X = X^*$ if and only if the ideal is condense.

Let (X, τ) be a topological space and I be an ideal on X, then $(X, \tau, \tau^{\delta}, I)$ is called an ideal delta space[7]. Then for any set A of X, $A^{*\delta}(I, \tau^{\delta}) = \{x \in X / A \cap U_x \notin I, \text{ for every } \delta$ - set U_x containing $x\}$. This is simply called δ - local function and simply denoted as $A^{*\delta}$. Also $cl^{*\delta}(A) = A \cup A^{*\delta}$ defines a Kuratowski closure operator [7] for a topology $\tau^{*\delta}(I)$ (or simply $\tau^{*\delta}$) which is finer than τ^{δ} .

Lemma 1. (see [7]) Let $(X, \tau, \tau^{\delta}, I)$ be an ideal delta space, and let A, B be subsets of X. Then

- (i) $\phi^{*\delta} = \phi$ (ii) $A \subset B \Rightarrow A^{*\delta} \subset B^{*\delta}$ (iii) $I_1 \subseteq I_2 \Rightarrow A^{*\delta}(I_1) \subseteq A^{*\delta}(I_2)$ (iv) $A^{*\delta} \subseteq A^*$ (v) $A^{*\delta} \cup B^{*\delta} = (A \cup B)^{*\delta}$
- (vi) for every $J \in I, (A \cup J)^{*\delta} = A^{*\delta} = (A J)^{*\delta}$

A perfect set in topological space is a set without isolated points (dense in itself) and closed. Hayashi introduced *- perfect sets [9] in ideal topological spaces. Later, Manoharan[8] introduced R^* - perfect sets. Muhammad Shabir [10] introduced and studied soft topological spaces. Rodyna A.Hosny [11] extended the idea of perfect sets to soft ideal topological spaces. In this Chapter, we introduce, $L^{*\delta}$ - perfect sets, $R^{*\delta}$ - perfect sets and $C^{*\delta}$ - perfect sets, study their properties.

Definition 2. A subset A of an ideal space (X, τ, I) is said to be

(i) τ^* - closed [5] if $A^* \subseteq A$

(ii) *- dense in itself [9] if $A \subseteq A^*$

(iii) * - perfect [9] if $A = A^*$

Definition 3. (See [8]) Let (X, τ, I) be an ideal topological space. A subset A of X is said to be

(i) L^* - perfect if $A - A^* \in I$

(ii) R^* - perfect if $A^* - A \in I$

(iii) C^* - perfect if A is both L^* - perfect and R^* - perfect

The collection of L^* - perfect sets, R^* - perfect sets and C^* - perfect sets in (X, τ, I) is denoted by **L**, **R** and **C** respectively.

2. $L^{*\delta}$ - perfect sets, $R^{*\delta}$ - perfect sets and $C^{*\delta}$ - perfect sets

In this section, we define three collections of subsets \mathbf{L}_{δ} , \mathbf{R}_{δ} and \mathbf{C}_{δ} in an ideal delta space and study some their properties.

Definition 4. A subset A of an ideal delta space $(X, \tau, \tau^{\delta}, I)$ is said to be

(i) τ^{*δ} - closed if A^{*δ} ⊆ A
(ii) *δ- dense in itself if A ⊆ A^{*δ}
(iii) *δ- perfect if A = A^{*δ}

Definition 5. Let $(X, \tau, \tau^{\delta}, I)$ be an ideal delta space. A subset A of X is said to be

The collection of $L^{*\delta}$ - perfect sets, $R^{*\delta}$ - perfect sets and $C^{*\delta}$ - perfect sets in $(X, \tau, \tau^{\delta}, I)$ is denoted by \mathbf{L}_{δ} , \mathbf{R}_{δ} and \mathbf{C}_{δ} respectively.

Remark 6. If $I = \{\phi\}$, then

(i)
$$\mathbf{L}_{\delta} = \{A \subseteq X : A - A^{*\delta} \in I = \{\phi\}\}$$

 $= \{A \subseteq X : A - A^{*\delta} = \phi\}$
 $= \{A \subseteq X : A \subseteq A^{*\delta}\}$
 $=$ The collection of $*\delta$ - dense in itself
(ii) $\mathbf{R}_{\delta} = \{A \subseteq X : A^{*\delta} - A \in I = \{\phi\}\}$
 $= \{A \subseteq X : A^{*\delta} - A = \phi\}$

$$= \{A \subseteq X : A^{*\delta} \subseteq A\}$$

= The collection of all $\tau^{*\delta}$ - closed sets.

(iii)
$$\mathbf{C}_{\delta} = \{A \subseteq X : A - A^{*\delta} \in I \text{ and } A^{*\delta} - A \in I\}$$

$$= \{A \subseteq X : A \subseteq A^{*\delta} \text{ and } A^{*\delta} \subseteq A\}$$

$$= \{A \subseteq X : A = A^{*\delta}\}$$

= The collection of $*\delta$ - perfect sets.

Remark 7. If I = P(X), then $A^{*\delta} = \{x \in X : A \cap U_x \notin P(X) \text{ for every } \delta \text{ - set } U_x \text{ containing } x\} = \phi$. Which implies $\mathbf{L}_{\delta} = \{A \subseteq X : A - A^{*\delta} \in I = P(X)\} = \{A \subseteq X : A \in P(X)\} = P(X)$.

The following Theorem 8 shows that the relation between $*\delta$ - perfect set and $C^{*\delta}$ - perfect set.

Theorem 8. In an ideal delta space $(X, \tau, \tau^{\delta}, I)$, every $*_{\delta}$ - perfect set is $C^{*_{\delta}}$ - perfect.

Proof. Let *A* be an $*\delta$ - perfect set. Then $A = A^{*\delta}$, which implies $A - A^{*\delta} = A^{*\delta} - A = \phi \in I$. Therefore *A* is both $R^{*\delta}$ - perfect and $L^{*\delta}$ - perfect and hence *A* is $C^{*\delta}$ - perfect.

The following Example 9 shows that the converse of the above Theorem 8 is not true.

Example 9. Let $(X, \tau, \tau^{\delta}, I)$ be an ideal delta space with $X = \{a, b, c, d\}$, $\tau = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$, $I = \{\phi, \{a\}\}$. Then $\tau^{\delta} = \{\phi, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, X\}$. The set $\{a\}$ is both $R^{*\delta}$ - perfect and $L^{*\delta}$ - perfect and hence $C^{*\delta}$ - perfect but not $a * \delta$ - perfect set.

The following Theorem 10 gives the relation between $\tau^{*\delta}$ - closed set and $R^{*\delta}$ - perfect.

Theorem 10. In an ideal delta space $(X, \tau, \tau^{\delta}, I)$, every $\tau^{*\delta}$ - closed set is $R^{*\delta}$ - perfect.

Proof. Let A be a $\tau^{*\delta}$ - closed set. Then $A^{*\delta} \subseteq A$. Therefore $A^{*\delta} - A = \phi \in I$ and hence A is an $R^{*\delta}$ - perfect.

Corollary 11. In an ideal delta space $(X, \tau, \tau^{\delta}, I)$

(i) X and ϕ are $R^{*\delta}$ - perfect

(ii) every τ - closed set is $R^{*\delta}$ - perfect

(iii) every τ^* - closed set is $R^{*\delta}$ - perfect

(iv) every τ^{δ} - closed set is $R^{*\delta}$ - perfect

Proof. The proof follows from Theorem 10.

The following Example shows that the converses of Theorem 10 and Corollary 11 are not true.

Example 11. Let $(X, \tau, \tau^{\delta}, I)$ be an ideal delta space with $X = \{a, b, c, d\}$, $\tau = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$, $I = \{\phi, \{a\}\}$. Then $\tau^{\delta} = \{\phi, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, X\}$. The set $\{b, c, d\}$ is $R^{*\delta}$ - perfect but not τ - closed, τ^* - closed and $\tau^{*\delta}$ - closed

Theorem 12. If a subset A of an ideal delta space $(X, \tau, \tau^{\delta}, I)$ is $C^{*\delta}$ - perfect, then $A\Delta A^{*\delta} \in I$.

Proof. Since *A* is both $L^{*\delta}$ - perfect and $R^{*\delta}$ - perfect, $A - A^{*\delta} \in I$ and $A^{*\delta} - A \in I$. By finite additive property of ideals, $(A - A^{*\delta}) \cup (A^{*\delta} - A) \in I$, which implies $A\Delta A^{*\delta} \in I$.

The following Theorem 13 shows that every element of an ideal is $C^{*\delta}$ -perfect.

Theorem 13. If a subset A of an ideal delta space $(X, \tau, \tau^{\delta}, I)$ is such that $A \in I$, then A is $C^{*\delta}$ - perfect.

Proof. Since $A \in I$, $A^* = \phi$ and $A^{*\delta} \subseteq A^*$, which implies $A^{*\delta} = \phi$, $A - A^{*\delta} = A \in I$ and $A^{*\delta} - A = \phi \in I$. Then *A* is both $L^{*\delta}$ - perfect and $R^{*\delta}$ - perfect. Therefore *A* is $C^{*\delta}$ - perfect.

Corollary 14. Let A be an subset of an ideal delta space $(X, \tau, \tau^{\delta}, I)$. Consider the following

(i) If A∈I, then every subset of A is C^{*δ} - perfect.
(ii) If A is R^{*δ} - perfect, then A^{*δ} - A is C^{*δ} - perfect.
(iii) If A is L^{*δ} - perfect, then A - A^{*δ} is C^{*δ} - perfect.
(iv) A is C^{*δ} - perfect, then AΔA^{*δ} is C^{*δ} - perfect.

Proof. The Proof follows from Theorem 13.

Theorem 15. In an ideal delta space $(X, \tau, \tau^{\delta}, I)$, every $*_{\delta}$ - dense in itself set is an $L^{*\delta}$ - perfect set.

Proof. Let *A* be $a * \delta$ - dense in itself set of *X*. Then $A \subseteq A^{*\delta}$. Therefore $A - A^{*\delta} = \phi \in I$, which implies *A* is an $L^{*\delta}$ - perfect set.

The following Remark 16 shows that the converse of Theorem 15 need not be true.

Remark 16. The members of an ideal delta space are $L^{*\delta}$ - perfect, but the non-empty members of the ideal are not $*\delta$ - dense in itself. Therefore the converse of Theorem 15 need not be true.

Theorem 17. In an ideal delta space $(X, \tau, \tau^{\delta}, I)$,

(i) empty set is an $L^{*\delta}$ - perfectset

(ii) X is an $L^{*\delta}$ - perfect set if the ideal is condense.

Proof.(i) Since $\phi - \phi^* = \phi \in I$, the empty set is an $L^{*\delta}$ - perfect. (ii) We know that $X = X^{*\delta}$ if and only if the ideal *I* is condense. Then $X - X^{*\delta} = \phi \in I$, which implies *X* is an $L^{*\delta}$ - perfect set

3. Main Results

In this section, we prove that finite union and intersection of $R^{*\delta}$ - perfect sets are again $R^{*\delta}$ - perfect set. Using these results, we obtain a new topology for the finite topological space which is finer than $\tau^{*\delta}$ - topology.

In ideal delta spaces, usually $A \subseteq B$ implies $A^{*\delta} \subseteq B^{*\delta}$. We observe that there are some sets A and B such that $A \subseteq B$ but $A^{*\delta} = B^{*\delta}$

Example 18. Let $(X, \tau, \tau^{\delta}, I)$ be an ideal delta space with $X = \{a, b, c, d\}$, $\tau = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$, $I = \{\phi, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{c, d\}, \{a, c, d\}\}$. Then $\tau^{\delta} = \{\phi, \{c\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, X\}$. Here $A = \{b, d\}$ and $B = \{b, c, d\}$ are such that $A \subseteq B$ but $A^{*\delta} = B^{*\delta} = \{a, b, d\}$

Theorem 19.. Let $(X, \tau, \tau^{\delta}, I)$ be an ideal delta space. Let *A* and *B* be two subsets of *X* such that $A \subseteq B$ and $A^{*\delta} = B^{*\delta}$, then

(i) B is $R^{*\delta}$ - perfect if A is $R^{*\delta}$ - perfect

(ii) A is $L^{*\delta}$ - perfect if B is $L^{*\delta}$ - perfect

Proof. (i) Let *A* be an $R^{*\delta}$ - perfect set. Then $A - A^{*\delta} \in I$. Now $B^{*\delta} - B = A^{*\delta} - B \subseteq A^{*\delta} - A$. By heredity property of ideals, $B^{*\delta} - B \in I$. Hence *B* is $R^{*\delta}$ - perfect.

(ii) Let *B* be an $L^{*\delta}$ - perfect set. Then $B - B^{*\delta} \in I$. Now $A - A^{*\delta} = A - B^{*\delta} \subseteq B - B^{*\delta}$. By heredity property of ideals, $A^{*\delta} - A \in I$. Hence *A* is $L^{*\delta}$ - perfect.

Corollary 20. Let $(X, \tau, \tau^{\delta}, I)$ be an ideal delta space. Let *A* and *B* be two subsets of *X* such that $A \subseteq B \subseteq cl^{*\delta}(A)$, then

(i) B is $R^{*\delta}$ - perfect if A is $R^{*\delta}$ - perfect

(ii) A is $L^{*\delta}$ - perfect if B is $L^{*\delta}$ - perfect

Proof. $A^{*\delta} \subseteq B^{*\delta} \subseteq (cl^{*\delta}(A))^{*\delta} = (A \cup A^{*\delta})^{*\delta} = A^{*\delta} \cup (A^{*\delta})^{*\delta} = A^{*\delta}.$ Hence $A^{*\delta} = B^{*\delta}$. Therefore the result follows from Theorem 19.

Theorem 21. Let *A* be an subset of an ideal delta space $(X, \tau, \tau^{\delta}, I)$ such that *A* is $L^{*\delta}$ - perfect and $A \cap A^{*\delta}$ is $R^{*\delta}$ - perfect, then both *A* and $A \cap A^{*\delta}$ are $C^{*\delta}$ - perfect.

Proof. Since A is $L^{*\delta}$ - perfect, $A - A^{*\delta} \in I$, by lemma1.(vi) for every $J \in I, (A \cup J)^{*\delta} = A^{*\delta} = (A - J)^{*\delta}$. Therefore $A \cup (A - A^{*\delta}) = A^{*\delta} = A - (A - A^{*\delta})$, which implies $A^{*\delta} = (A \cap A^{*\delta})^{*\delta}$. Therefore $A \cap A^{*\delta} \subseteq A$ with $(A \cap A^{*\delta})^{*\delta} = A^{*\delta}$, By Theorem 19 A is $R^{*\delta}$ - perfect if $A \cap A^{*\delta}$ is $R^{*\delta}$ - perfect

and $A \cap A^{*\delta}$ is $L^{*\delta}$ - perfect if A is $L^{*\delta}$ - perfect. Hence A is $R^{*\delta}$ - perfect and $A \cap A^{*\delta}$ is $L^{*\delta}$ - perfect. Therefore A and $A \cap A^{*\delta}$ are $C^{*\delta}$ - perfect.

Theorem 22. If a subset A of an ideal delta space $(X, \tau, \tau^{\delta}, I)$ is $R^{*\delta}$ - perfect and $A^{*\delta}$ is $L^{*\delta}$ - perfect, then $A \cap A^{*\delta}$ is $L^{*\delta}$ - perfect.

Proof. Since A is $R^{*\delta}$ - perfect, $A^{*\delta} - A \in I$, by lemma1.(vi) for every $J \in I, (A \cup J)^{*\delta} = A^{*\delta} = (A - J)^{*\delta}$. Therefore $(A^{*\delta} \cup (A^{*\delta} - A)^{*\delta} = (A^{*\delta})^{*\delta} = (A^{*\delta} - (A^{*\delta} - A))^{*\delta}$, this implies $(A^{*\delta})^{*\delta} = (A \cap A^{*\delta})^{*\delta}$. Therefore, we have $A \cap A^{*\delta} \subseteq A$ with $(A \cap A^{*\delta})^{*\delta} = A^{*\delta}$. By Theorem 19 (ii), $A \cap A^{*\delta}$ is $L^{*\delta}$ - perfect if $A^{*\delta}$ is $L^{*\delta}$ - perfect. Hence $A \cap A^{*\delta}$ is $L^{*\delta}$ - perfect.

Theorem 23. If A and B are $R^{*\delta}$ - perfect sets, then $A \cup B$ is an $R^{*\delta}$ - perfect set.

Proof. Let *A* and *B* be $R^{*\delta}$ - perfect sets. Then $A^{*\delta} - A \in I$ and $B^{*\delta} - B \in I$. By finite additive property of ideals $(A^{*\delta} - A) \cup (B^{*\delta} - B) \in I$. Since $(A^{*\delta} \cup B^{*\delta}) - (A \cup B) \subseteq (A^{*\delta} - A) \cup (B^{*\delta} - B)$, by heredity property of ideal $(A^{*\delta} \cup B^{*\delta}) - (A \cup B) \in I$. Hence $(A \cup B)^{*\delta} - (A \cup B) \in I$. Therefore $A \cup B$ is an $R^{*\delta}$ - perfect set.

Corollary 24. Finite union of $R^{*\delta}$ - perfect sets is an $R^{*\delta}$ - perfect set.

Proof. The proof follows from Theorem 23.

Theorem 25. If A and B are $L^{*\delta}$ - perfect sets, then $A \cup B$ is an $L^{*\delta}$ - perfect set.

Proof. Since *A* and *B* are $L^{*\delta}$ - perfect sets, $A - A^{*\delta} \in I$ and $B - B^{*\delta} \in I$. Hence by finite additive property of ideals $(A - A^{*\delta}) \cup (B - B^{*\delta}) \in I$. Since $(A \cup B) - (A^{*\delta} \cup B^{*\delta}) \subseteq (A - A^{*\delta}) \cup (B - B^{*\delta})$, by heredity property of ideal $(A \cup B) - (A^{*\delta} \cup B^{*\delta}) \in I$. This proves $A \cup B$ is an $L^{*\delta}$ - perfect set.

Corollary 26. Finite union of $L^{*\delta}$ - perfect sets is an $L^{*\delta}$ - perfect set.

Proof. The proof follows from Theorem 25.

Theorem 27. If A and B are $R^{*\delta}$ - perfect sets, then $A \cap B$ is an $R^{*\delta}$ - perfect set.

Proof. Suppose that *A* and *B* are $R^{*\delta}$ - perfect sets. Then $A - A^{*\delta} \in I$ and $B - B^{*\delta} \in I$. By finite additive property of ideals $(A^{*\delta} - A) \cup (B^{*\delta} - B) \in I$. Since $(A^{*\delta} \cap B^{*\delta}) - (A \cap B) \subseteq (A^{*\delta} - A) \cup (B^{*\delta} - B)$, by heredity property $(A^{*\delta} \cap B^{*\delta}) - (A \cap B) \in I$. Also $(A \cap B)^{*\delta} - (A \cap B) \subseteq (A^{*\delta} \cap B^{*\delta}) - (A \cap B) \in I$. This proves the result.

Corollary 28. Finite intersection of $R^{*\delta}$ - perfect sets is an $R^{*\delta}$ - perfect set.

Proof. The proof follows from Theorem 27.

Theorem 29. Finite union of $C^{*\delta}$ - perfect sets is a $C^{*\delta}$ - perfect set.

Proof. From Corollaries 24 and 26, finite union of $C^{*\delta}$ - perfect sets is a $C^{*\delta}$ - perfect set.

Theorem 30. If $(X, \tau, \tau^{\delta}, I)$ is an ideal delta space with X being finite, then the collection of $R^{*\delta}$ sets forms a topology which is finer than the topology of $\tau^{*\delta}$ - closed sets.

Proof. By corollary 11, X and ϕ are $R^{*\delta}$ - perfects. By corollary 24. Finite union of $R^{*\delta}$ - perfect sets is an $R^{*\delta}$ - perfect set and by corollary 28 finite intersection of $R^{*\delta}$ - perfect sets is $R^{*\delta}$ - perfect set. Hence the collection \mathbf{R}_{δ} is a topology if X is finite. Also by Theorem 10, every $\tau^{*\delta}$ - closed set is $R^{*\delta}$ - perfect. Hence the topology \mathbf{R}_{δ} is finer than the topology of $\tau^{*\delta}$ - closed sets.

Theorem 31. In an ideal delta space $(X, \tau, \tau^{\delta}, I)$, $(\tau^{*\delta}$ - closed set) $\cup I \subseteq \mathbf{R}_{\delta}$.

Proof. The proof follows from Theorem 10 and 13.

The following Example 32 shows that $(\tau^{*\delta} - \text{closed set}) \cup I \neq \mathbf{R}_{\delta}$.

Example 32. Let $(X, \tau, \tau^{\delta}, I)$ be an ideal delta space with $X = \{a, b, c, d\}$, $\tau = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}, I = \{\phi, \{a\}\}.$ Then $\tau^{*\delta}$ - closed set = $\{\phi, \{a\}, \{d\}, \{a, b\}, \{a, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, X\}$ and $\mathbf{R}_{\delta} =$ $\{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}.$ Hence clearly $(\tau^{*\delta} - closed set) \cup I \neq \mathbf{R}_{\delta}.$

Theorem 33. Let $(X, \tau, \tau^{\delta}, I)$ be an ideal delta space and $A \subseteq X$. Then the set A is $R^{*\delta}$ - perfect if and only if $F \subseteq A^{*\delta} - A$ implies that $F \in I$.

Proof. Assume that A is an $R^{*\delta}$ - perfect set. Then $A^{*\delta} - A \in I$. By heredity property of ideals, every set $F \subseteq A^{*\delta} - A$ in X is also in I. Conversely assume that $F \subseteq A^{*\delta} - A$ in X implies that $F \in I$. Since $A^{*\delta} - A$ is a subset of itself, by assumption $A^{*\delta} - A \in I$. Hence A is $R^{*\delta}$ - perfect.

Theorem 34. Let (X, τ) be a topological space and $A \subseteq X$. Let I_1 and I_2 be two ideals in X with $I_1 \subseteq I_2$. Then A is $R^{*\delta}$ - perfect with respect to I_2 if it is $R^{*\delta}$ - perfect with respect to I_1 .

Proof. Since $I_1 \subseteq I_2$, $A^{*\delta}(I_2) \subseteq A^{*\delta}(I_1)$, by lemma 1 (iii). Let A be $R^{*\delta}$ - perfect with respect to I_1 . Then $A^{*\delta}(I_1) - A \in I_1$. Also $A^{*\delta}(I_2) - A \subseteq A^{*\delta}(I_1) - A$. Hence by heredity property of ideals $A^{*\delta}(I_1) - A \in I_1 \subseteq I_2$. Therefore A is $R^{*\delta}$ - perfect with respect to I_2 .

4. $R^{*\delta}$ - topology

By corollary 10 and Theorem 27, we observe that the collection \mathbf{R}_{δ} satisfies the conditions of being a basis for some topology and it will be called as $R^{*\delta}(\tau^{\delta}, I)$. We define $R^{*\delta}(\tau^{\delta}, I) = A \subseteq X/X - A \in R^{*\delta}(\tau^{\delta}, I)$ on a non empty set X. Clearly $R^{*\delta}(\tau^{\delta}, I)$ is a topology if X is finite. The members of the collection $R^{*\delta}(\tau^{\delta}, I)$ will be called $R^{*\delta}$ - open sets. If there is no confusion about the topology τ^{δ} and ideal I, then we call $R^{*\delta}(\tau^{\delta}, I)$ as $R^{*\delta}$ - topology when X is finite.

Definition 35. A subset A of an ideal delta topological space $(X, \tau, \tau^{\delta}, I)$ is said to be $R^{*\delta}$ - closed if it is a complement of an $R^{*\delta}$ - open set.

Definition 36. Let *A* be a subset of an ideal delta space $(X, \tau, \tau^{\delta}, I)$. One defines $R^{*\delta}$ - interior of the set *A* as the largest $R^{*\delta}$ - open set contained in *A*. One will denote $R^{*\delta}$ - interior of the set *A* by $R^{*\delta}$ - int(*A*).

Definition 37. Let *A* be a subset of an ideal delta space $(X, \tau, \tau^{\delta}, I)$. A point $x \in A$ is said to be an $R^{*\delta}$ -interior point of *A* if there exist an $R^{*\delta}$ - open set *U* of *x* such that $x \in U \subseteq A$.

Definition 38. Let $(X, \tau, \tau^{\delta}, I)$ be an ideal delta space and $x \in X$. One defines $R^{*\delta}$ - neighborhood of x as an $R^{*\delta}$ - open set containing x. One denotes the set of all $R^{*\delta}$ - neighborhood of x by $R^{*\delta}$ - N(x).

Theorem 39. In an ideal delta space $(X, \tau, \tau^{\delta}, I)$, every $\tau^{*\delta}$ - open set is $R^{*\delta}$ - open set.

Proof. Let A be a $\tau^{*\delta}$ - open set. Therefore X - A is $\tau^{*\delta}$ - closed set. This implies X - A is an $R^{*\delta}$ - closed set. Hence A is an $R^{*\delta}$ - open set.

Corollary 40. The topology $R^{*\delta}(\tau^{\delta}, I)$ on a finite set X is finer than the topology $\tau^{*\delta}(\tau, I)$.

Proof. The proof follows from theorem 39.

Corollary 41. For any subset A of an ideal delta space $(X, \tau, \tau^{\delta}, I)$, $\operatorname{int}_{\delta}(A)$ is an $\mathbb{R}^{*\delta}$ -open set.

Proof. The proof follows from Theorem 39.

Remark 42. (i) Since every δ - open set is an $R^{*\delta}$ - open set, every δ - neighborhood U of a point $x \in X$ is an $R^{*\delta}$ neighborhood of x.

(ii) If $x \in X$ is an δ -interior point of a subset A of X, then x is an $R^{*\delta}$ -interior point of A.

(iii) From (ii), we have $\operatorname{int}_{\delta}(A) \subseteq \operatorname{int}^{*\delta}(A) \subseteq R^{*\delta}$ - $\operatorname{int}(A)$, where $\operatorname{int}^{*\delta}$ denotes interior of *A* with respect to the topology $\tau^{*\delta}$.

Theorem 43. Let *A* and *B* be subsets of an ideal delta space $(X, \tau, \tau^{\delta}, I)$ with *X* being finite. Then the following properties hold.

(i) $R^{*\delta}$ - int(A) = $\bigcup \{ U/U \subseteq X \text{ and } U \text{ is an } R^{*\delta} \text{ - open set} \}$.

(ii) $R^{*\delta}$ - int(A) is the largest $R^{*\delta}$ - open set of X contained in A.

(iii) A is $R^{*\delta}$ - open if and only if $A = R^{*\delta}$ - int(A)

(iv) $R^{*\delta} - \operatorname{int}(R^{*\delta} - \operatorname{int}(A)) = R^{*\delta} - \operatorname{int}(A)$. (v) If $A \subseteq B$, then $R^{*\delta} - \operatorname{int}(A) \subseteq R^{*\delta} - \operatorname{int}(B)$.

Proof. The proof follows from Definition 35,36 and 37.

Definition 44. Let *A* be a subset of an ideal delta space $(X, \tau, \tau^{\delta}, I)$. One defines $R^{*\delta}$ - closure of the set *A* as the smallest $R^{*\delta}$ -closed set containing *A*. One will denote $R^{*\delta}$ - closure of a set *A* by $R^{*\delta}$ - cl(A).

Remark 45. For any subset *A* of an ideal delta space $(X, \tau, \tau^{\delta}, I)$, $R^{*\delta} - cl(A) \subseteq cl^{*\delta}(A) \subseteq cl_{\delta}(A)$.

Theorem 46. Let *A* and *B* be subsets of an ideal delta space $(X, \tau, \tau^{\delta}, I)$ with *X* being finite. Then the following properties hold.

(i) R^{*δ} - cl(A) = ∩{F / A ⊆ F and F is R^{*δ} - closed set}.
(ii) A is R^{*δ} - closed if and only if A = R^{*δ} - cl(A).
(iii) R^{*δ} - cl(R^{*δ} - cl(A)) = R^{*δ} - cl(A).
(iv) If A ⊂ B, then R^{*δ} - cl(A) ⊂ R^{*δ} - cl(B).

Proof. The proof follows from Definition 44.

Theorem 47. Let *A* be a subset of an ideal delta space $(X, \tau, \tau^{\delta}, I)$. Then the following properties hold.

- (i) $R^{*\delta}$ int $(X A) = X R^{*\delta} cl(A)$.
- (ii) $R^{*\delta} cl(X A) = X R^{*\delta} int(A)$.

Proof. The proof follows from Definitions 35,36 and 44.

References

- [1] C. Chattopadhyay, A Study on resolvability and irresolvability in topological space and bitopological spaces with relevant structures and mappings, Thesis 1995, Burdwan Univ., W.B., India.
- [2] C. Chattopadhyay and U.K. Roy, δ sets, irresolvable and resolvable spaces, Math. Slovaca, 42 (1992), 3, 371 – 378
- [3] T. R. Hamlett and D. Jankovic, Ideals in general topology, general Topology and its Applications, pp. 115 125, 1988.
- [4] T. R. Hamlett and D. Jankovic, Ideals in topological spaces and the set operatory, Bollettino della Unione Mathematica Italiana, vol. 7, pp. 863 – 874, 1990.
- [5] T. R. Hamlett and D. Jankovic, New topologies from old via ideals, The American Mathematical Monthly, vol. 97, pp. 295 310, 1990.
- [6] D. Jankovic and T. R. Hamlett, Compatible extensions of ideals, Bollettino della Unione Mathematica Italiana, vol. 7, no. 6, pp. 453 465, 1992.
- [7] Shyamapada Modak, Ideal delta space, Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 45, 2207 2214.
- [8] R. Manoharan and P. Thangavelu, Some New sets and topologies in ideal topological spaces, Research Article, Chinese Journal of mathematics, Vol. 2013, Article ID 973608.
- [9] E. Hayashi, Topologies defined by local properties, Mathematische Annalen, vol. 156, no. 3, pp. 205 215, 1964.
- [10] Muhammad shabir and Munnazanaz, On soft topological spaces, Comput.Math. Appl., 61 (2011), pp. 1786–1799.
- [11] Rodyna A. Hosny, Notes on soft Perfect Sets, Int. Journal of Math. Analysis, vol. 8, 2014, no. 17, 803 – 812.