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Abstract

In the present paper a solution of dual series equations involving Laguerre
polynomials have been obtained by using multiplying factor technique used by
Noble and Lowndes.

1. INTRODUCTION

The problem considered in this paper is that of determining the sequence {A,} such
that
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where O<pf+mO0<a+pfB<a+l p and mare non negative intgers and
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is the Laguerre polynomial, f,(x) and g,(x)are prescribed functions.n=0,12,......;

j=12,.....,s; and au,b are known constants.

The solution presented in this paper is obtained by employing a multiplying factor
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technique similar to that used by Noble[3] or Lowndes [5]. Egs (1.1)and (1.2) can also
be solved by a technique used by Sneddon and Srivastava [ ] in solving dual series
equations involving Bessel’s functions.

2. PRILIMINARY RESULTS:

Some of the results which will be required in the course of the analysis are given
below.

From Erdelyi [2] (p. 293 (5), p.(405(20)) it can be deduced that
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where O<y<d, -1<a, 0< B+m and
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where d <y <oo, a+1>a+ >0 .

From Erdelyi [2] (p. 292) (3), p. 293 (3) it is easy to derive the following
orthogonality relation for the Laguerre polynomial.
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where a >-1and ¢, is kronecker delta.
The differential formula
dm L asml Ia+m+n+2)
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Follows from Erdelyi [1] (p. 190(27)).

The analysis in the next section will be formal and no attempt to justify the various
limiting process will be made.

3. SOLUTION OF THE PROBLEM:

Multiply equation (1.1) by x* (y—x)”*™*, integrat with respect to x over (0, y) and
then use (2.1) to find
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where O<y<d, -1<a, 0< B+m and m is a non-negative integer.
Differentiate (3.1) (m+1) times with respect to y and use (2.4) to find
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where O0<y<d,-1<a,0<fA+m and m is a non-negative integer. Again multiply

(1.2) by e *(x—y)”, integrate with respect to x over (y,o) and then use (2.2) to
find
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where d<y<o, f<1 and O<a+p,c; are the elements of the matrix
[b; 1l 1%i=12,3,...,s, The left hand sides of egs. (3.2) and (3.3) are now identical

and the following solution of egs. (1.1) and (1.2) can therefore be obtained by virtue
of orthogonality relation (2.3).

For a+1>a+ >0, F-+m>0 anytwo non-negative integers m and p,
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and
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— -Ba-
G(y)=[ (x-y)"e"g(x)dx (36)
y
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