A Study on Some Curvature Properties of Almost C(λ) Manifold

Avijit Kumar Paul

Department of Mathematics, University of Kalyani Kalyani – 741235, West Bengal, India.

Abstract

The plan of the present paper is to study some curvature properties of almost $c(\lambda)$ manifolds. We shall consider Einstein semi symmetric almost $c(\lambda)$ manifolds and such manifolds satisfying E.S =0 , S.E =0 , E.R =0 , where E is the Einstein tensor , R is the Riemannian curvature tensor , S is the Ricci tensor of the manifold .we shall also consider ϕ - Ricci symmetric almost $c(\lambda)$ manifolds.

Keywords and Phrases: Almost contact manifolds, almost $c(\lambda)$ manifolds, Einstein tensor, ϕ Ricci symmetry, Riemannian curvature tensor.

2010 AMS subject classification: 53C25, 53D15.

SECTION-1

INTRODUCTION

The notion of almost $c(\lambda)$ manifolds was first given by Janssen and Vanhecke [6]. Again in the paper [7] conformally flat almost $c(\lambda)$ manifolds have been studied. Recently in the papers [1], [2], [3], A. Akbar has studied some curvature properties of almost $c(\lambda)$ manifolds. The notion of Einstein tensor has been introduced to study curvature properties in the paper [3]. ϕ - Ricci symmetric sasakian manifolds have been studied in the paper [5].

In this paper we would like to study, some curvature properties of almost $c(\lambda)$ manifolds . The present paper is organised as follows : we give some preliminary formulae in section- 2. In section- 3 we study Einstein semisymmetric almost $c(\lambda)$ manifolds. Section 4 contains the study of almost $c(\lambda)$ manifolds satisfying E.R=0, where E is the Einstein tensor , R is the Riemannian curvature tensor , S is the Ricci curvature tensor of the manifolds . The last section contains the study of φ - Ricci symmetric almost $c(\lambda)$ manifolds.

SECTION-2

Preliminaries : An odd dimensional differentiable manifold is called almost contact manifolds if there exist a 1-1 tensor η , a vetor field X_i and a Riemannian metric g such that [4].

$$\phi^{2} X = X + \eta(X)\xi, \ \eta(\xi) = 1 \qquad (2.1)$$

$$g(\phi X, \phi Y) = g(X,Y) - \eta(X) \ \eta(Y) \qquad (2.2)$$

$$\phi(\xi) = 0, \qquad \eta(\phi(X)) = 0 \qquad (2.3)$$

Here X, Y are differentiable vector fields defined on the manifolds . An almost contact manifolds is called an almost $c(\lambda)$ manifolds if its curvature tensor R is given by [7]

$$R(X, Y)Z = R(\phi X, \phi y)z - \lambda [Xg(X, Y) - g(X, Y)Y - \phi Xg(X, Y) + g(X, Y) \phi Y] -----(2.4)$$

From above equation we also have

$$R(X,Y)\xi = R(\phi X, \phi Y)\xi - \lambda[\eta(Y)X - \eta(X)Y] - \dots (2.5)$$

$$R(\xi, Y)Z = -\lambda[g(Y,Z)\xi - \eta(Z)Y] - \dots (2.6)$$

$$R(\xi,Y)\xi = -\lambda[\eta(Y)\xi - Y] - \dots (2.7)$$

$$R(\xi,\xi)Z = 0 - \dots (2.8)$$

The Ricci tensor of almost $c(\lambda)$ manifolds was deduced in the paper [1]. The Ricci tensor is given below

$$S(X,Y) = -\lambda[(2n-1)g(X,Y) + \eta(X)\eta(Y)]$$
-----(2.9)

Here the dimension of the manifold is considered 2n+1 from above we get the Ricci operator Q as follows

$$QX = \lambda (1-2n)X - \lambda \eta(X)\xi$$
-----(2.10)

The Einstein tensor of a manifold is defined as

$$E(X,Y) = S(X,Y) - r/2g(X,Y)$$
-----(2.11)

Where S is the Ricci curvature tensor and r is the scaler curvature tensor of the manifold.

SECTION-3

Definition 3.1

An almost $c(\lambda)$ manifold will be called Einstein semisymmetric if it satisfies

$$R(X,Y)Z .E(U,V) = 0.$$
 -----(3.1)

Let us consider an almost $c(\lambda)$ manifolds is Einstein semisymmetric then

R(X,Y)Z.E(U,V) = 0.

Now from (2.11) E(U,V) = S(U,V) - r/2g(U,V). Again using we have $E(U,V) = -\lambda$ [(2n-1)g(U,V) + η (U) η (V)] - r/2g(U,V). -----(3.2) Now R(X,Y)Z.E(U,V) = 0, means

E(R(X,Y)Z,U) + E(Z,R(X,Y)U) = 0.

Using (2.11) in the above equation we get S(R(X,Y)Z,U) - r/2 g(R(X,Y)Z,U) + S(Z,R(X,Y)U) - r/2 g(Z,R(X,Y)U) = 0.

Putting Z= ξ in the above equation we get $S(R(X,Y)\xi,U)$ -r/2g($R(X,Y)\xi,U$) +S (ξ , R(X,Y)U) -r/2g(ξ , R(X,Y)U) = 0 .

Using (2.5) and (2.9) in the above equation we get,

$$\begin{split} S(R(\; \varphi \; X, \, \varphi \; Y)\xi \; -\lambda[\eta(Y)X - \eta(X)Y] \; , \; U) - r/2g(R(\; \varphi \; X, \; \varphi \; Y)\xi \; -\lambda[\eta(Y)X \; -\eta(X)Y], U) \; - \\ \lambda[(2n-1)g(\xi,R(X,Y)U) + \eta(\xi)\eta(R(X,Y)U)] \; - r/2 \; \eta(R\; (X,Y)U) = 0, \end{split}$$

$$\begin{split} S(R(\ \varphi\ X,\ \varphi\ Y)\xi\ -\lambda[\eta(Y)X-\eta(X)Y]\ ,\ U)\ -r/2g(R(\ \varphi\ X,\ \varphi\ Y)\xi,U) +\lambda r/2\ \eta(Y)g\ (X,U) -\lambda r/2\eta(X)g(Y,U) -\lambda[(2n-1)\eta(R(X,Y)U) +\eta((R(X,Y)U)] -r/2\ \eta(R(X,Y)U =0, X) -\lambda r/2\eta(X)g(Y,U) -\lambda r/2\eta(X)g(X,U) +\eta((R(X,Y)U) +\eta((R(X,Y)U)) -r/2\eta(X)g(X,U) -\lambda r/2\eta(X)g(X,U) -\lambda r/2\eta(X)g(X,$$

 $S(R(\phi X, \phi Y)\xi - \lambda[\eta(Y)X - \eta(X)Y], U) - r/2g(R(\phi X, \phi Y)\xi, U) + \lambda r/2 \eta(Y)g(X, U) - \lambda r/2\eta(X)g(Y, U) - 2n\lambda \eta(R(X, Y)U) - r/2 \eta(R(X, Y)U = 0.$

Putting $X=\xi$, We have

 $S(-\lambda[\eta(Y)\xi-Y],U) + \lambda r/2\eta(Y)\eta(U) - \lambda r//2)g(Y,U) - 2n\lambda \ \eta(R(\xi,Y)U) - r/2 \ \eta(R(\xi,Y)U = 0)$

 $-\lambda S(\phi^2 Y, U) - \lambda r/2[g(Y, U) - \eta(Y)\eta(U)] - (2n\lambda + r/2)\eta(R(\xi, Y)U) = 0,$

 $-\lambda S(\phi^{2}Y,U) -)-\lambda r/2[g(Y,U) - \eta(Y)\eta(U))] - (2n\lambda + r/2)\eta(-\lambda \{g(Y,U)\xi - \eta(U)Y\}) = 0,$

$$\begin{split} \lambda^2[(2n\text{-}1)g(\phi^2Y,U) + & \eta((\phi^2Y) \ \eta(U)] \) - \lambda r/2[\ g(Y,U) - \ \eta(Y)\eta(U)] \ - (2n\lambda + r/2)\eta(-\lambda \{ \ g(Y,U)\xi - \eta(U)Y\}) = 0, \end{split}$$

 $\lambda^2(2n-1)g(\phi^2Y,U) \) - \lambda r/2[\ g(Y,U) - \eta(Y)\eta(U)] \ - (2n\lambda + r/2)\eta(-\lambda \{ \ g(Y,U)\xi - \eta(U)Y\}) = 0,$

 $\lambda^2(2n-1)g(\phi^2Y,U) - \lambda r/2[g(Y,U) - \eta(Y)\eta(U)] - (2n\lambda + r/2)(-\lambda \{g(Y,U) - \eta(Y)\eta(U\})] = 0,$

 $\lambda^{2}(2n-1)g(\phi^{2}Y,U)+2 \lambda^{2}n[g(Y,U)-\eta(Y)\eta(U)]=0,$

 $\lambda^2(2n-1)g(\phi^2Y,U) + 2\lambda^2n g(\phi Y, \phi U) = 0$,

 $-\lambda^2$ (2n-1). $g(\phi Y, \phi U) + 2\lambda^2 n g(\phi Y, \phi U) = 0$, $\lambda^2 g(\phi Y, \phi U) = 0$, this implies $\lambda = 0$. As $g(\phi Y, \phi U)$ is not zero.

Hence we can state the following theorem.

Theorem 3.1

If an almost $c(\lambda)$ manifolds is Einstein semisymmetric, then λ is necessarily zero. But the converse may not be true always.

SECTION-4

In this section we like to study almost $c(\lambda)$ manifold satisfying E.R=0 where E is Einstein tensor and R is Riemannian curvature tensor.Let us consider an almost $c(\lambda)$, manifold satisfying E.R=0. now E.R=0 means, E(U,R(X,Y)Z)+E(R(X,Y),V)=0. S(U,R(X,Y)Z)-r/2g(U,R(X,Y)Z)+S(V,R(X,Y)Z)-r/2g(V,R(X,Y)Z)=0.

Putting Z= ξ , We get, . S(U,R(X,Y) ξ)-r/2g(U,R(X,Y) ξ) +S(V,R(X,Y) ξ)-r/2g(V,R(X,Y) ξ)=0,

 $\begin{array}{l} -\lambda \left[(2n\text{-}1)g(U,\!R(X,\!Y)\!\xi) + \eta(U) \; \eta(R(X,\!Y)\!\xi) \right] - r\!/2 \; g(R(X,\!Y)\!\xi,\!U) - \lambda \left[(2n\text{-}1)g(R(X,\!Y)\!\xi,\!V) + \eta(V) \; \eta(R(X,\!Y)\!\xi) \right] - r\!/2 \; g(R(X,\!Y)\!\xi,\!V) = 0, \end{array}$

 $\begin{array}{l} -\lambda \left[(2n\text{-}1)g(U,R(\ \varphi\ X,\ \varphi\ Y)\xi] \ \right) -\lambda \left[\eta(Y)X-\ \eta(X)Y) \right] +\eta(U)\ \eta(R(\ \varphi\ X,\ \varphi\ Y)\xi) -\lambda \left[\eta(Y)X-\ \eta(X)Y) \right] -n/2g(U,R(\ \varphi\ X,\ \varphi\ Y)\xi] \ \right) -\lambda \left[\eta(Y)X-\ \eta(X)Y) \right] -\lambda \left[(2n\text{-}1)g(V,R(\ \varphi\ X,\ \varphi\ Y)\xi) \right] -\lambda \left[\eta(Y)X-\ \eta(X)Y) \right] -n/2g(V,R(\ \varphi\ X,\ \varphi\ Y)\xi) -\lambda \left[\eta(Y)X-\ \eta(X)Y) \right] -n/2g(V,R(\ \varphi\ X,\ \varphi\ Y)\xi) -\lambda \left[\eta(Y)X-\ \eta(X)Y) \right] -n/2g(V,R(\ \varphi\ X,\ \varphi\ Y)\xi) -\lambda \left[\eta(Y)X-\ \eta(X)Y) \right] -n/2g(V,R(\ \varphi\ X,\ \varphi\ Y)\xi) -\lambda \left[\eta(Y)X-\ \eta(X)Y) \right] -n/2g(V,R(\ \varphi\ X,\ \varphi\ Y)\xi) -n/2g(V,R(\ \varphi\ X),\ \varphi\ Y) -n$

Putting $X = \xi$, We have,

$$\begin{split} -\lambda & \left[(2n-1)g(U, -\lambda(\eta(Y)\xi-Y) + \eta(U) \, \eta(-\lambda(\eta(Y)\xi-Y)] - r/2g(U, -\lambda(\eta(Y)\xi-Y)) - \lambda \, \left[(2n-1)g(V, -\lambda(\eta(Y)\xi-Y) + \eta(V) \, \eta(-\lambda(\eta(Y)\xi-Y)] - r/2)g(V, -\lambda(\eta(Y)\xi-Y)) = 0, \right. \\ & \lambda^2(2n-1) \, g(\varphi^2Y,U) + r \, \lambda \, /2g(\varphi^2Y,U) + \lambda^2(2n-1)g(\varphi^2Y,V) \,) + r \, \lambda \, /2 \, g(\varphi^2Y,V) = 0, \\ & (2n \, \lambda^2 - \lambda^2 + r \, \lambda \, /2)(\, g(\varphi^2Y,U) + g(\varphi^2Y,V)) = 0. \, \text{Finally we get } \lambda = 0. \end{split}$$

Thus we are in a situation to state the following,

Theorem 4.1

If an almost $c(\lambda)$ manifold satisfies E.R = 0 then λ is necessarily zero.

But the converse may not be true always.

SECTION-5

ϕ -Ricci symmetric almost $c(\lambda)$ manifold:

The notion of ϕ - Ricci symmetric sasakian manifolds was introduced by U.C. De and A. Sarkar in the paper [5] following this paper in this section we study ϕ -Ricci symmetric almost $c(\lambda)$ manifolds.

Definition 5.1

An almost $c(\lambda)$ manifold will be called ϕ - Ricci symmetric if $\phi^2(\nabla_w Q)X = 0$.

The manifold will be called Ricci symmetric if the vector field W and X are orthogonal to ξ .

Let us consider an almost $c(\lambda)$ manifold is ϕ -Ricci symmetric.

Now from (2.10) we get
$$QX = \lambda(1-2n)X - \lambda \eta(X)\xi$$
 now

$$(\nabla_{\mathbf{w}}\mathbf{Q})\mathbf{X} = \nabla_{\mathbf{w}}(\mathbf{Q}\mathbf{X}) - \mathbf{Q}(\nabla_{\mathbf{w}}\mathbf{X})$$

$$\begin{split} &= \nabla_{w}(\ \lambda(1\text{-}2n)X\ -\lambda\eta(X)\xi\) - \lambda(1\text{-}2n)\ \nabla_{w}X\ +\ \lambda\eta(\nabla_{w}X)\ \xi \\ &= (1\text{-}2n)\ (\lambda\nabla_{w}X\ + X\nabla_{w}\ \lambda\) - (\nabla_{w}\ \lambda)\eta(X)\xi\ -\ \lambda(\ (\nabla_{w}\eta(X\))\ \xi \\ &+ (\nabla_{w}\ \xi)\ \eta(X)) - \lambda(1\text{-}2n)\ \nabla_{w}X\ -\lambda\eta(\nabla_{w}X)\ \xi \\ &= (1\text{-}2n)X\ \nabla_{w}\ \lambda - (\ \nabla_{w}\ \lambda)\ \eta(X)\xi\ -\lambda((\nabla_{w}\eta)X\ \xi\ + \eta(\nabla_{w}X)\ \xi\ + (\nabla_{w}\ \xi)\ \eta(X)) \\ &+ \lambda\ \eta(\nabla_{w}X)\ \xi \\ &= (1\text{-}2n)X\ \nabla_{w}\ \lambda - (\ \nabla_{w}\ \lambda)\ \eta(X)\xi\ -\lambda((\nabla_{w}\eta)X\ \xi\ -\lambda\ (\nabla_{w}\ \xi)\ \eta(X) \end{split}$$

Since the manifold is locally ϕ - Ricci symmetric by definition

$$(1-2n)X \nabla_w \lambda - (\nabla_w \lambda) \eta(X)\xi - \lambda((\nabla_w \eta)X \xi - \lambda (\nabla_w \xi) \eta(X) = 0,$$

$$\nabla_w\,\lambda(X-2nX-\eta(X)\xi\)\ -\lambda\big(\big(\nabla_w\eta\big)X\ \xi\ + (\nabla_w\,\xi)\ \eta(X)\big) = \!\!0.$$

Replacing X by ϕ X

$$(\nabla_{\mathbf{w}} \lambda)(\mathbf{QX} - 2\mathbf{n} \phi \mathbf{X}) - \lambda((\nabla_{\mathbf{w}} \eta)(\phi \mathbf{X}) \xi = 0.$$

If λ is constant then λ must be zero. Thus we are in a position to state the following theorem.

Theorem 5.1

There exist no ϕ - Ricci symmetric almost $c(\lambda)$ manifield with λ as a non zero constant.

REFERENCES

- [1]. Akbar, A., Some results on almost $C(\lambda)$ manifolds, Int. J. Of Math. Sci. and Engg. Appls., 7(2013), 255 -260.
- [2]. Akbar, A., Sarkar, A., Almost $C(\lambda)$ manifolds admitting W_2 curvature tensor, Journal of rajasthan Academy of Physical Sciences, 13 (2014), 31-38.
- [3]. Akbar, A., Sarkar, A., Some curvature properties of Trans- Sasakian manifolds.,Lobachevskii Journal of Math , 35 (2014), 56-64.
- [4]. Blair, D. E., Reimannian geometry of contact and symplectic manifolds, Lectures Notes in Mathematics, 2002, Barkhauser.
- [5]. Janssen, D., and vanhecke, L., Almost contact structures and curvatures tensor, kodai Math. Journal, 4(1981), 1-27.
- [6]. Kharitonova, S. V., Almost $C(\lambda)$ manifolds, Journal of Mathematical Sciences, 177(2011),742-747.
- [7]. De, U. C., and Sarkar, A., On φ- Ricci symmetric sasakian manifolds, Proceedings of Jangjeon Math. Soc., 11(2008), 47-52.