New Results for Fuzzy Generalized Continuous Functions

V.Chandraseker ${ }^{1,}$ D.Sobana ${ }^{\mathbf{2}}$ and A.Vadivel ${ }^{3}$
${ }^{1 \& 2}$ Department of Mathematics, Kandaswami Kandar's college P.Velur, Namakkal- 638182, Tamil Nadu, India.
${ }^{3}$ Department of Mathematics, Annamalai university, Annamalai nagar, Tamil nadu-608 002, India.

Abstract

In this paper, a new class of functions called fuzzy continuous function, fuzzy generalized continuous function and fuzzy δ g-irresolute mappings has been defined and its properties are investigated. Examples and counter examples are given.

Keywords and phrases: Fuzzy δ-continuity, fuzzy δ-generalized continuity, fuzzy δ g-irresolute mappings, fuzzy topological space, fuzzy generalized closed set, fuzzy δ-generalized closed set, fuzzy continuous function, fuzzy generalized continuous function, fuzzy $\delta \mathrm{g}$-irresolute mappings.

Mathematics subject classification: 54A40

1. INTRODUCTION

Zadeh [6] introduced the fundamental concept of fuzzy sets. The concept of fuzzy topological spaces was introduced in [5]. The concept of extension of fuzzy topological spaces introduced by [2]. And the generalized fuzzy continuous functions was introduced by [3].

Let (X, τ) be a fuzzy topological space and $\tau \subset \tau^{*}$ then τ^{*} will be called a simple extension of $\tau[2]$ if there exists of $\delta \notin \tau$ such that

$$
\tau^{*}=\{\lambda \vee(\mu \wedge \delta) / \lambda, \mu \in \tau\}
$$

In this case, we write $\tau^{*}=\tau(\delta)$. In this paper, we introduce a new definitions of fuzzy δ - continuous function, fuzzy δ - closed set, fuzzy δg - continuous functions. Throughout this paper X and Y represents the fuzzy topological spaces (X, τ) and (Y, σ).

2. PRELIMINARIES

A fuzzy topology τ [5] on X is a collection of subsets of τ such that
(i) $0,1 \in \tau\left(\right.$ or $\left.0_{\mathrm{x}}, 1_{\mathrm{x}} \in \tau\right)$
(ii) If $\lambda, \mu \in \tau$ then $\lambda \vee \mu \in \tau$
(iii) $\lambda_{\mathrm{i}} \in \tau$ for each $\mathrm{i} \in \tau$ then $\vee \lambda_{\mathrm{i}} \in \tau$

The ordered pair (X, τ) is called a fuzzy topological space (in short fts) and members of τ are called τ-fuzzy open sets or simply fuzzy open sets.

A fuzzy set λ in a fuzzy topological space is called a fuzzy closed set if its complement (1- λ) is fuzzy open set. $\mathrm{Cl}(\lambda)$ denotes the closure of λ and is given by
$\mathrm{Cl}(\lambda)=\wedge\{\mu / \mu$ is fuzzy closed and $\mu \geq \lambda\}$.
Int (λ) denotes the interior of λ and is given by
$\operatorname{Int}(\lambda)=\vee\{\mu / \mu$ is fuzzy open and $\mu \leq \lambda\}$

Definition: 2.1

A fuzzy set λ in a fts (X, τ) is called
(i) fuzzy semi open [1] if $\lambda \leq \mathrm{Cl}(\operatorname{Int}(\lambda))$.
(ii) fuzzy pre open $[4]$ if $\lambda \leq \operatorname{Int}(\mathrm{Cl}(\lambda))$.
(iii) fuzzy α open [4] if $\lambda \leq \operatorname{Int}(\operatorname{Cl}(\operatorname{Int}(\lambda))$.
(iv) fuzzy generalized closed (Briefly,fg-closed) [1] if $\mathrm{Cl}(\lambda) \leq \mu$ whenever $\lambda \leq \mu$ and μ is fuzzy open in (X, τ).

Definition: $\mathbf{2 . 2}$

A mapping $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be
(i) fuzzy continuous [5] if $\mathrm{f}^{-1}(\lambda)$ is fuzzy open set in (X, τ), for each fuzzy open set λ in (Y, σ).
(ii) fuzzy pre Continuous [4] if $\mathrm{f}^{-1}(\lambda)$ is fuzzy pre open set in (X, τ), for each fuzzy open set λ in (Y, σ).
(iii) fuzzy α-continuous [4] if $\mathrm{f}^{-1}(\lambda)$ is fuzzy α-open set in (X, τ), for each fuzzy open set λ in (Y, σ).
(iv) fuzzy g-continuous [3] if $\mathrm{f}^{-1}(\lambda)$ is fg-closed set in (X, τ), for each fuzzy closed set λ in (Y, σ).

3. NEW FORMS OF FUZZY CONTINUITY BY SUITABLE CHOICE OF δ

Definition: 3.1

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ and δ be a non fuzzy open set of (X, τ) then f is called a fuzzy δ - continuous function, if $\mathrm{f}^{-1}(\lambda)$ is an fuzzy open set in (X, τ^{*}) for every fuzzy open set λ in (Y, σ).

Preposition: 3.1

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a fuzzy continuous function and let δ be a non- fuzzy open subset in (Y, σ) if $\mathrm{f}^{-1}(\delta)$ is a fuzzy open set of (X, τ) then $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow\left(\mathrm{Y}, \sigma^{*}\right)$ is a fuzzy continuous function.

Proof:

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a fuzzy continuous function and $\delta \notin \sigma$ be a non fuzzy open subset in (Y, σ) and let $\sigma \subset \sigma^{*}$. Let β be a fuzzy open set in $\left(\mathrm{Y}, \sigma^{*}\right)$ Then $\beta=\lambda \vee(\mu \wedge$ δ) where λ and μ are fuzzy open sets in (Y, σ).

$$
\begin{aligned}
\mathrm{f}^{-1}(\beta)= & \mathrm{f}^{-1}(\lambda \vee(\mu \wedge \delta)) \\
& =\mathrm{f}^{-1}(\lambda) \vee\left(\mathrm{f}^{-1}(\mu) \wedge \mathrm{f}^{-1}(\delta)\right)
\end{aligned}
$$

Since f is a fuzzy continuous function and assumption that $\mathrm{f}^{-1}(\delta)$ is a fuzzy open set of (X, τ) then $f^{-1}(\beta)$ is fuzzy open subset of (X, τ) which implies that
$\mathrm{f}:(\mathrm{X}, \tau) \rightarrow\left(\mathrm{Y}, \sigma^{*}\right)$ is a fuzzy continuous function.

Preposition: 3.2

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a fuzzy continuous function and $\delta \notin \tau$ be a non fuzzy set in (X, τ) then $\mathrm{f}:\left(\mathrm{X}, \tau^{*}\right) \rightarrow(\mathrm{Y}, \sigma)$ is a fuzzy continuous function.

Proof:

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a fuzzy continuous function and $\delta \notin \tau$ be a non fuzzy open subset in (X, τ). Let $\tau \subset \tau^{*}$ and Consider $\mathrm{f}:\left(\mathrm{X}, \tau^{*}\right) \rightarrow(\mathrm{Y}, \sigma)$. Then this function f is fuzzy continuous function, since every fuzzy open set in (X, τ) is an fuzzy open set in $\left(\mathrm{X}, \tau^{*}\right)$ and since $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is a fuzzy continuous functions.

Preposition: 3.3

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a fuzzy continuous function and δ_{1} be a non fuzzy open subset in (X, τ) and δ_{2} be a non fuzzy open subset in (Y, σ), if $\mathrm{f}^{-1}\left(\delta_{2}\right)$ is a fuzzy open set in $\left(\mathrm{X}, \tau\left(\delta_{1}\right)\right)$, then $\mathrm{f}:\left(\mathrm{X}, \tau\left(\delta_{1}\right)\right) \rightarrow\left(\mathrm{Y}, \sigma\left(\delta_{2}\right)\right)$ is a fuzzy continuous function.

Proof

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a fuzzy continuous function and $\delta \notin \tau$ be a non fuzzy open set in (X, τ) and let $\tau \subset \tau^{*}$. Consider $\mathrm{f}:\left(\mathrm{X}, \tau\left(\delta_{1}\right)\right) \rightarrow(\mathrm{Y}, \sigma)$ since every fuzzy open set in (X, τ) is an fuzzy open set in $\left(\mathrm{X}, \tau\left(\delta_{1}\right)\right)$ and since $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is a fuzzy continuous function. Then $\mathrm{f}:\left(\mathrm{X}, \tau\left(\delta_{1}\right)\right) \rightarrow(\mathrm{Y}, \sigma)$ is a fuzzy continuous function.

Let $\delta_{2} \notin \sigma$ be a non fuzzy open subset in (Y, σ) Let $\sigma \subset \sigma^{*}$, where σ^{*} be a simple extension of σ if and only if there exist $\delta_{2} \notin \sigma$ such that $\sigma^{*}=\{\lambda \vee(\mu \wedge \delta) / \lambda, \mu \in \sigma\}$. In this case, we write $\sigma^{*}=\sigma\left(\delta_{2}\right)$. Let β be an fuzzy open set in (Y, $\sigma\left(\delta_{2}\right)$), then $\beta=\lambda \vee\left(\mu \wedge \delta_{2}\right)$ where λ and μ are fuzzy open set in (Y, σ)

$$
\begin{aligned}
\mathrm{f}^{-1}(\beta) & =\mathrm{f}^{-1}\left(\lambda \vee\left(\mu \wedge \delta_{2}\right)\right) \\
& =\mathrm{f}^{-1}(\lambda) \vee\left(\mathrm{f}^{-1}(\mu) \wedge \mathrm{f}^{-1}\left(\delta_{2}\right)\right)
\end{aligned}
$$

Since f is a fuzzy continuous function and the assumption that $\mathrm{f}^{-1}\left(\delta_{2}\right)$ is an fuzzy open set in $\left(\mathrm{X}, \tau\left(\delta_{1}\right)\right), \mathrm{f}^{-1}(\beta)$ is a in fuzzy open set in (X, $\tau\left(\delta_{1}\right)$) then $\mathrm{f}:\left(\mathrm{X}, \tau\left(\delta_{1}\right)\right) \rightarrow\left(\mathrm{Y}, \sigma\left(\left(\delta_{2}\right)\right)\right.$ is a fuzzy continuous function.

Preposition : 3.4

Every fuzzy continuous function is a fuzzy δ - continuous function.

Proof:

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is a fuzzy continuous function then $\mathrm{f}^{-1}(\lambda)$ is a fuzzy open set in (X, τ) for every fuzzy open set λ in (Y, σ). Let us consider $\delta \notin \tau$ be a non fuzzy open subset in (X, τ), then consider $\tau \subset \tau^{*}$. Consider $\mathrm{f}:\left(\mathrm{X}, \tau^{*}\right) \rightarrow(\mathrm{Y}, \sigma)$ is a fuzzy continuous function. Since $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is a fuzzy continuous function and every fuzzy open set in (X, τ) is a fuzzy open set in $\left(X, \tau^{*}\right)$, then $f^{-1}(\lambda)$ is an fuzzy open set in (X, τ^{*}).

Hence $\mathrm{f}:\left(\mathrm{X}, \tau^{*}\right) \rightarrow(\mathrm{Y}, \sigma)$ is a fuzzy δ - continuous function.

Remark :3.1

The converse of preposition 3.2 is not always true as shown by the following example.

Example :3.1

Let $X=\{a, b, c\}, \tau=\{1,0, \lambda\}$ where $\lambda: X \rightarrow[0,1]$ is defined by $\lambda(a)=0, \lambda(b)=0$, $\lambda(\mathrm{c})=1$. Then (X, τ) is a fuzzy topological space. Let δ be a non fuzzy open set in (X, τ) where $\delta: \mathrm{X} \rightarrow[0,1]$ is defined by $\delta(\mathrm{a})=0, \delta(\mathrm{~b})=1, \delta(\mathrm{c})=0$ then $\tau(\delta)=\{0,1$, $\lambda, \delta, \lambda \vee \delta\}$ be the fuzzy topology on X and let $\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \sigma=\{1,0, \lambda\}$ is the fuzzy topology on Y , where $\lambda(\mathrm{a})=0, \lambda(\mathrm{~b})=0, \lambda(\mathrm{c})=1$.

If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ defined by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{b}$ then $\mathrm{f}^{-1}(\lambda)=\delta$ since δ is a fuzzy open set in $\left(\mathrm{X}, \tau^{*}\right)$. Then f is a fuzzy δ-continuous function, but not a fuzzy continuous function.

4. NEW FORMS OF FUZZY GENERALIZED CONTINUITY BY SUITABLE CHOICE OF δ

Definition: 4.1

A fuzzy subset λ of a space (X, τ) is said to be fuzzy δ - generalized closed set (Briefly, fuzzy δg-closed) if $\delta \mathrm{Cl}(\lambda) \leq \beta$ whenever $\lambda \leq \beta$ and β is fuzzy open in (X, τ) where $\delta \mathrm{Cl}(\lambda)$ is given by $\delta \mathrm{Cl}(\lambda)=\wedge\{\gamma \leq 1: \lambda \leq \gamma$, whenever γ is a fuzzy closed set $\left.\tau^{*}\right\}$.

A fuzzy subset of X belonging to τ^{*} is denoted by fuzzy δ - open set, the complement of fuzzy δ-open set is denoted by fuzzy δ - closed set .

The family of all fuzzy δ - open set is denoted by $\mathrm{F} \delta \mathrm{O}(\mathrm{X})$ and the family of all δ-fuzzy closed sets is denoted by $\mathrm{F} \delta \mathrm{C}(\mathrm{X})$.

Definition: 4.2

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called a fuzzy δ-continuous function if $\mathrm{f}^{-1}(\lambda)$ is a δ fuzzy closed set in (X, τ), for every closed set λ in (Y, σ).

Definition: 4.3

A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called δ-fuzzy continuous function. if $\mathrm{f}^{-1}(\lambda)$ is a fuzzy $\delta \mathrm{g}$ - closed set in (X, τ), for every closed set λ in (Y, σ).

Preposition : 4.4

For a fuzzy subset of a space (X, τ) and a function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ from the definition stated above, we have the following diagram of implications.
fuzzy continuous function $\xrightarrow{(3)} \rightarrow \quad g$-fuzzy continuous function
\downarrow (4)
fuzzy δ-continuous function
$(2) \rightarrow$ fuzzy δg - continuous function

Proof

1) Since f is a fuzzy continuous function then $f^{-1}(\lambda)$ is a fuzzy open set in (X, τ) for every fuzzy open set λ in (Y, σ) but every fuzzy open set in (X, τ) is a fuzzy open set in $\left(X, \tau^{*}\right)=>f^{-1}(\lambda)$ is a fuzzy δ - open set in $\left(X, \tau^{*}\right)$ for every fuzzy open set λ in $(\mathrm{Y}, \sigma)=>\mathrm{f}$ is a fuzzy δ-continuous function.
2) Since f is a δ-fuzzy continuous function then $\mathrm{f}^{-1}(\lambda)$ is a fuzzy δ-closed set in (X, τ) for every fuzzy closed set λ in (Y, σ). But every fuzzy δ - closed set in (X, τ) is a fuzzy $\delta \mathrm{g}$-closed set in $(\mathrm{X}, \tau)=>\mathrm{f}^{-1}(\lambda)$ is a fuzzy $\delta \mathrm{g}$ - closed set in (X, τ) for every fuzzy closed set λ in $(\mathrm{Y}, \sigma)=>\mathrm{f}$ is a fuzzy $\delta \mathrm{g}$-continuous function.
3) Since f is a fuzzy continuous function then $f^{-1}(\lambda)$ is a fuzzy closed set in (X, τ) for every fuzzy closed set λ in (Y, σ) But every fuzzy closed set in (X, τ) is a g -fuzzy closed set in (X, τ) then $\mathrm{f}^{-1}(\lambda)$ is a g-fuzzy closed set in (X, τ) for every fuzzy closed set λ in $(\mathrm{Y}, \sigma) \Rightarrow \mathrm{f}$ is a g -fuzzy continuous function.
4) Since f is g-fuzzy continuous function then $f^{-1}(\lambda)$ is a g-fuzzy closed set in (X, τ) is a fuzzy δ-closed set in $\left(\mathrm{X}, \tau^{*}\right)=>$ every fuzzy δ-closed set is a δ g-fuzzy closed set $=>\mathrm{f}^{-1}(\lambda)$ is a δ-fuzzy closed set in $\left(\mathrm{X}, \tau^{*}\right)$ for every fuzzy

$$
\text { closed set } \lambda \text { in }(\mathrm{Y}, \sigma)=>\mathrm{f} \text { is a fuzzy } \delta \mathrm{g} \text { - continuous function. }
$$

Example : 4.6

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ Define fuzzy sets $\lambda, \delta, \beta: \mathrm{X}=\mathrm{Y} \rightarrow[0,1]$ by the equation $\lambda(a)=0.5, \quad \lambda(b)=0, \quad \lambda(c)=0$

$$
\begin{array}{lll}
\delta(\mathrm{a})=0, & \delta(\mathrm{~b})=0.6, & \delta(\mathrm{c})=0, \text { and } \\
\beta(\mathrm{a})=0.6, & \beta(\mathrm{~b})=0.6, & \beta(\mathrm{c})=1 \text { then }
\end{array}
$$

$\tau=\{1,0, \lambda, \beta\}$ is a fuzzy topology on X and $\sigma=\{1,0, \delta\}$ is a fuzzy topology on Y . Let δ be the non fuzzy open set in (X, τ) then $\tau(\delta)=\{1,0, \lambda, \delta, \lambda \vee \delta\}$. Let $\lambda_{1}(a)=0.4$, $\lambda_{1}(\mathrm{~b})=0, \lambda_{1}(\mathrm{c})=0$ be the fuzzy subset in (X, τ). If $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ defined by,
a) $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}$ and $\mathrm{f}(\mathrm{c})=\mathrm{c}$ then f is a fuzzy δ-continuous function but not a fuzzy continuous function.
b) $f(a)=f(c)=b$, and $f(b)=a$ then f is a fuzzy g-continuous function but not a fuzzy continuous function.

5. ON FUZZY δg-CONTINUOUS FUNCTION

Definition: 5.1

A mapping $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be fuzzy δ-irresolute (briefly, f δ-irresolute) if $f^{-1}(\lambda)$ fuzzy δ-closed set in X, for every closed set λ in Y.

Definition : 5.2

A mapping $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be fuzzy δ-generalized irresolute (briefly, f $\delta \mathrm{g}$ irresolute) if $\mathrm{f}^{-1}(\lambda)$ is $f \delta \mathrm{~g}$-closed set in X , for every $\delta \mathrm{g}$-closed set λ in Y .

Theorem : 5.1

Every $\mathrm{f} \delta \mathrm{g}$-irresolute mapping is $\mathrm{f} \delta \mathrm{g}$-continuous.

Proof:

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is f $\delta \mathrm{g}$-irresolute. Let λ be a fuzzy closed set in Y . Then λ is f $\delta \mathrm{g}$-closed fuzzy set in Y. Since f is $\mathrm{f} \delta \mathrm{g}$-irresolute. $\mathrm{f}^{-1}(\lambda)$ is $\mathrm{f} \delta \mathrm{g}$-closed set in X . Hence f is $\mathrm{f} \delta \mathrm{g}$-continuous.

Remark : 5.1

However the converse of the above theorem need not be true as seen from the following example.

Example : 5.1

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. Define fuzzy sets $\lambda, \delta_{1}, \delta_{2}: \mathrm{X} \rightarrow[0,1]$ by the equation, $\lambda(a)=0.5, \quad \lambda(b)=0, \quad \lambda(c)=1$,

$$
\begin{array}{lll}
\delta_{1}(\mathrm{a})=0, & \delta_{1}(\mathrm{~b})=0.6, & \delta_{1}(\mathrm{c})=0, \\
\delta_{2}(\mathrm{a})=0, & \delta_{2}(\mathrm{~b})=0, & \delta_{2}(\mathrm{c})=0.7
\end{array}
$$

and $\gamma: \mathrm{Y} \rightarrow[0,1]$ defined by $\gamma(\mathrm{a})=1, \gamma(\mathrm{~b})=0.5, \gamma(\mathrm{c})=0$.
$\tau=\{1,0, \lambda\}$ is a fuzzy topology on (X, $\tau) . \sigma=\{1,0, \gamma\}$ is a fuzzy topology on (Y, σ). Let δ_{1} be the non fuzzy open set in (X, $\left.\tau\right)$, then $\tau\left(\delta_{1}\right)=\left\{1,0, \lambda, \delta_{1}, \lambda \vee \delta_{1}\right\}$ and δ_{2} be the non fuzzy open set in (Y, σ), then $\sigma\left(\delta_{2}\right)=\left\{1,0, \gamma, \delta_{2}, \gamma \vee \delta_{2}\right\}$. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow$ (Y, σ) defined by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{c}$, then f is fuzzy $\delta \mathrm{g}$-continuous function. But f is not $\mathrm{f} \delta \mathrm{g}$-irresolute.

Definition:5.3

A mapping $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is said to be fuzzy δ-closed mappings if $\mathrm{f}(\lambda)$ is fuzzy δ closed in (Y, σ), for every fuzzy closed set λ in X .

Definition:5.4

A mappings $f:(X, \tau) \rightarrow(Y, \sigma)$ is said to be fuzzy δg-closed mappings if $f(\lambda)$ is fuzzy $\delta \mathrm{g}$-closed in (Y, σ), for every fuzzy closed set λ in X .

Definition:5.5

If every fuzzy $\delta \mathrm{g}$-closed in X is fo-closed in X ,then the space can be denoted as f $\delta \mathrm{T}_{1 / 2}$-space.

Theorem:5.2

A fuzzy topological space (X, τ) is $\mathrm{f} \delta \mathrm{T}_{1 / 2}$-space if and only if $\mathrm{F} \delta \mathrm{O}(\mathrm{X}, \tau)=\mathrm{FG} \delta \mathrm{O}(\mathrm{X}$, $\tau)$.

Proof:(Necessity)

Let (X, τ) be $\mathrm{f} \delta \mathrm{T}_{1 / 2}$-space.Let $\lambda \in \mathrm{FG} \delta \mathrm{O}(\mathrm{X}, \tau)$, then $1-\lambda$ is a f $\delta \mathrm{g}$-closed set.Thus $\lambda \in$ $\mathrm{F} \delta \mathrm{O}(\mathrm{X}, \tau)$. Hence $\mathrm{F} \delta \mathrm{O}(\mathrm{X}, \tau)=\mathrm{FG} \delta \mathrm{O}(\mathrm{X}, \tau)$.

(sufficiency)

Let $\mathrm{F} \delta \mathrm{O}(\mathrm{X}, \tau)=\mathrm{FG} \delta \mathrm{O}(\mathrm{X}, \tau)$. Let λ is a f $\delta \mathrm{g}$-closed.Then $1-\lambda$ is a $\mathrm{f} \delta \mathrm{g}$-open. Hence $1-\lambda$ $\in \mathrm{F} \delta \mathrm{O}(\mathrm{X}, \tau)$.Thus λ is a f δ-closed set.Therefore (X, τ) is a $\mathrm{f} \delta \mathrm{T}_{1 / 2}$-space.

Theorem:5.3

Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be f $\delta \mathrm{g}$-continuous.Then f is fuzzy δ-continuous if (X, τ) is $\mathrm{f} \delta \mathrm{T}_{1 / 2}$-space.

Proof:

Let λ be a fuzzy closed of (Y, σ). Since f is f $\delta \mathrm{g}$-continuous, $\mathrm{f}^{-1}(\lambda)$ is f $\delta \mathrm{g}$-closed set of (X, τ). Again (X, τ) is a $\mathrm{f} \delta \mathrm{T}_{1 / 2}$-space and hence $\mathrm{f}^{-1}(\lambda)$ is a f -closed set of (X, τ).This implies that f is fuzzy δ-continuous.

Example:5.2

Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. Define fuzzy sets $\lambda, \delta: \mathrm{X} \rightarrow[0,1]$ by the equation,

$$
\begin{array}{cll}
\lambda(a)=0.5, & \lambda(b)=0, & \lambda(c)=1, \\
\delta(a)=0, & \delta(b)=0.6, & \delta(c)=0,
\end{array}
$$

and $\gamma: \mathrm{Y} \rightarrow[0,1]$ defined by $\gamma(\mathrm{a})=1, \gamma(\mathrm{~b})=0.5, \gamma(\mathrm{c})=1$.
$\tau=\{1,0, \lambda\}$ is a fuzzy topology on (X, τ). $\sigma=\{1,0, \gamma\}$ is a fuzzy topology on (Y, σ). Let δ be the non fuzzy open set in (X, τ), then $\tau(\delta)=\{1,0, \lambda, \delta, \lambda \vee \delta\}$. Let f : $(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ defined by $\quad \mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{c}$, then f is fuzzy $\delta \mathrm{g}-$ continuous function. But λ is not $f \delta \mathrm{~T}_{1 / 2}$-space as λ is not f -closed set of (X, τ).Then f is not fuzzy δ-continuous.

REFERENCES

[1] Azad K.K, "On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity", J.math. Appl, 82(1981), pp.14-32.
[2] Balasubramanian.G. 1992, "On extensions of fuzzy topologies", No.3, pp.239-244.
[3] Balasubramanian.G and Sundram.P.1997, "On some generalized of fuzzy continuous functions", Fuzzy sets and systems 86, PP. 93-100.
[4] G. Balasubramanian, "On fuzzy pre-seperation axioms", Bull Calcutta mat. Soc 90(6), (1998), pp.427-434.
[5] C.L.Chang, "Fuzzytopologicalspace", J.Math Anal Appl, 24,(1968) , pp. 182190.
[7] L.A.Zadeh, "Fuzzy sets", Information and Control 8 ,(1965), pp.338-353.

