New Results for Fuzzy Generalized Continuous Functions

V.Chandraseker^{1,} D.Sobana² and A.Vadivel³

^{1&2}Department of Mathematics, Kandaswami Kandar's college P.Velur, Namakkal- 638182, Tamil Nadu, India.

³Department of Mathematics, Annamalai university, Annamalai nagar, Tamil nadu-608 002, India.

Abstract

In this paper, a new class of functions called fuzzy continuous function, fuzzy generalized continuous function and fuzzy δg -irresolute mappings has been defined and its properties are investigated. Examples and counter examples are given.

Keywords and phrases: Fuzzy δ -continuity, fuzzy δ -generalized continuity, fuzzy δ g-irresolute mappings, fuzzy topological space, fuzzy generalized closed set, fuzzy δ -generalized closed set, fuzzy continuous function, fuzzy generalized continuous function, fuzzy δ g-irresolute mappings.

Mathematics subject classification: 54A40

1. INTRODUCTION

Zadeh [6] introduced the fundamental concept of fuzzy sets. The concept of fuzzy topological spaces was introduced in [5]. The concept of extension of fuzzy topological spaces introduced by [2]. And the generalized fuzzy continuous functions was introduced by [3].

Let (X, τ) be a fuzzy topological space and $\tau \subset \tau *$ then $\tau *$ will be called a simple extension of $\tau[2]$ if there exists of $\delta \notin \tau$ such that

 $\tau^* = \{\lambda \lor (\mu \land \delta) / \lambda, \, \mu \in \tau\}$

In this case, we write $\tau^* = \tau$ (δ). In this paper, we introduce a new definitions of fuzzy δ - continuous function, fuzzy δ - closed set, fuzzy δ g- continuous functions. Throughout this paper X and Y represents the fuzzy topological spaces (X, τ) and (Y, σ).

2. PRELIMINARIES

A fuzzy topology τ [5] on X is a collection of subsets of τ such that

- (i) 0, $1 \in \tau$ (or $0_x, 1_x \in \tau$)
- (ii) If λ , $\mu \in \tau$ then $\lambda \lor \mu \in \tau$
- (iii) $\lambda_i \in \tau$ for each $i \in \tau$ then $\forall \lambda_i \in \tau$

The ordered pair (X, τ) is called a fuzzy topological space (in short fts) and members of τ are called τ -fuzzy open sets or simply fuzzy open sets.

A fuzzy set λ in a fuzzy topological space is called a fuzzy closed set if its complement (1- λ) is fuzzy open set. Cl (λ) denotes the closure of λ and is given by

Cl (λ) = \wedge { μ/μ is fuzzy closed and $\mu \ge \lambda$ }.

Int (λ) denotes the interior of λ and is given by

Int $(\lambda) = \lor \{ \mu/\mu \text{ is fuzzy open and } \mu \leq \lambda \}$

Definition: 2.1

A fuzzy set λ in a fts (X, τ) is called

- (i) fuzzy semi open [1] if $\lambda \leq Cl$ (Int (λ)).
- (ii) fuzzy pre open [4] if $\lambda \leq \text{Int}(\text{Cl}(\lambda))$.
- (iii) fuzzy α open [4] if $\lambda \leq \text{Int} (\text{Cl}(\text{Int}(\lambda)))$.
- (iv) fuzzy generalized closed (Briefly,fg-closed) [1] if $Cl(\lambda) \le \mu$ whenever $\lambda \le \mu$ and μ is fuzzy open in (X, τ) .

Definition: 2.2

A mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

- (i) fuzzy continuous [5] if $f^{-1}(\lambda)$ is fuzzy open set in (X, τ) , for each fuzzy open set λ in (Y, σ) .
- (ii) fuzzy pre Continuous [4] if $f^{-1}(\lambda)$ is fuzzy pre open set in (X, τ) , for each fuzzy open set λ in (Y, σ) .
- (iii) fuzzy α -continuous [4] if $f^{-1}(\lambda)$ is fuzzy α -open set in (X, τ) , for each fuzzy open set λ in (Y, σ) .
- (iv) fuzzy g-continuous [3] if $f^{-1}(\lambda)$ is fg-closed set in (X, τ) , for each fuzzy closed set λ in (Y, σ) .

3. NEW FORMS OF FUZZY CONTINUITY BY SUITABLE CHOICE OF $\boldsymbol{\delta}$

Definition: 3.1

Let $f : (X, \tau) \to (Y, \sigma)$ and δ be a non fuzzy open set of (X, τ) then f is called a fuzzy δ - continuous function, if $f^{-1}(\lambda)$ is an fuzzy open set in (X, τ^*) for every fuzzy open set λ in (Y, σ) .

Preposition: 3.1

Let $f:(X, \tau) \to (Y, \sigma)$ be a fuzzy continuous function and let δ be a non-fuzzy open subset in (Y, σ) if $f^{-1}(\delta)$ is a fuzzy open set of (X, τ) then $f : (X, \tau) \to (Y, \sigma^*)$ is a fuzzy continuous function.

Proof:

Let $f : (X, \tau) \to (Y, \sigma)$ be a fuzzy continuous function and $\delta \notin \sigma$ be a non fuzzy open subset in (Y, σ) and let $\sigma \subset \sigma^*$. Let β be a fuzzy open set in (Y, σ^*) Then $\beta = \lambda \lor (\mu \land \delta)$ where λ and μ are fuzzy open sets in (Y, σ) .

$$\begin{split} f^{1}(\beta) &= f^{1}(\lambda \lor (\mu \land \delta)) \\ &= f^{1}(\lambda) \lor (f^{1}(\mu) \land f^{1}(\delta)) \end{split}$$

Since f is a fuzzy continuous function and assumption that $f^{-1}(\delta)$ is a fuzzy open set of (X, τ) then $f^{-1}(\beta)$ is fuzzy open subset of (X, τ) which implies that

f: $(X, \tau) \rightarrow (Y, \sigma^*)$ is a fuzzy continuous function.

Preposition: 3.2

Let $f : (X, \tau) \to (Y, \sigma)$ be a fuzzy continuous function and $\delta \notin \tau$ be a non fuzzy set in (X, τ) then $f : (X, \tau^*) \to (Y, \sigma)$ is a fuzzy continuous function.

Proof:

Let $f : (X, \tau) \to (Y, \sigma)$ be a fuzzy continuous function and $\delta \notin \tau$ be a non fuzzy open subset in (X, τ) . Let $\tau \subset \tau^*$ and Consider $f : (X, \tau^*) \to (Y, \sigma)$. Then this function f is fuzzy continuous function, since every fuzzy open set in (X, τ) is an fuzzy open set in (X, τ^*) and since $f : (X, \tau) \to (Y, \sigma)$ is a fuzzy continuous functions.

Preposition: 3.3

Let $f : (X, \tau) \to (Y, \sigma)$ be a fuzzy continuous function and δ_1 be a non fuzzy open subset in (X, τ) and δ_2 be a non fuzzy open subset in (Y, σ) , if $f^{-1}(\delta_2)$ is a fuzzy open set in $(X, \tau (\delta_1))$, then f: $(X, \tau (\delta_1)) \to (Y, \sigma (\delta_2))$ is a fuzzy continuous function.

Proof

Let $f: (X, \tau) \to (Y, \sigma)$ be a fuzzy continuous function and $\delta \notin \tau$ be a non–fuzzy open set in (X, τ) and let $\tau \subset \tau^*$. Consider $f: (X, \tau(\delta_1)) \to (Y, \sigma)$ since every fuzzy open set in (X, τ) is an fuzzy open set in $(X, \tau(\delta_1))$ and since $f: (X, \tau) \to (Y, \sigma)$ is a fuzzy continuous function. Then $f: (X, \tau(\delta_1)) \to (Y, \sigma)$ is a fuzzy continuous function.

Let $\delta_2 \notin \sigma$ be a non fuzzy open subset in (Y, σ) Let $\sigma \subset \sigma^*$, where σ^* be a simple extension of σ if and only if there exist $\delta_2 \notin \sigma$ such that $\sigma^* = \{\lambda \lor (\mu \land \delta) / \lambda, \mu \in \sigma\}$. In this case, we write $\sigma^* = \sigma(\delta_2)$. Let β be an fuzzy open set in $(Y, \sigma(\delta_2))$, then $\beta = \lambda \lor (\mu \land \delta_2)$ where λ and μ are fuzzy open set in (Y, σ)

$$\begin{split} f^{1}\left(\beta\right) &= f^{1}(\lambda \lor (\mu \land \delta_{2})) \\ &= f^{1}(\lambda) \lor (f^{1}(\mu) \land f^{1}(\delta_{2})) \end{split}$$

Since f is a fuzzy continuous function and the assumption that $f^{-1}(\delta_2)$ is an fuzzy open set in $(X, \tau(\delta_1)), f^{-1}(\beta)$ is a in fuzzy open set in $(X, \tau(\delta_1))$ then $f: (X, \tau(\delta_1)) \rightarrow (Y, \sigma((\delta_2)))$ is a fuzzy continuous function.

Preposition : 3.4

Every fuzzy continuous function is a fuzzy δ - continuous function.

Proof:

Let $f: (X, \tau) \to (Y, \sigma)$ is a fuzzy continuous function then $f^{-1}(\lambda)$ is a fuzzy open set in (X, τ) for every fuzzy open set λ in (Y, σ) . Let us consider $\delta \notin \tau$ be a non fuzzy open subset in (X, τ) , then consider $\tau \subset \tau^*$. Consider $f:(X, \tau^*) \to (Y, \sigma)$ is a fuzzy continuous function. Since $f: (X, \tau) \to (Y, \sigma)$ is a fuzzy continuous function and every fuzzy open set in (X, τ) is a fuzzy open set in (X, τ^*) , then $f^{-1}(\lambda)$ is an fuzzy open set in (X, τ^*) .

Hence $f: (X, \tau^*) \rightarrow (Y, \sigma)$ is a fuzzy δ - continuous function.

Remark :3.1

The converse of preposition 3.2 is not always true as shown by the following example.

Example :3.1

Let X = {a, b, c}, $\tau = \{1, 0, \lambda\}$ where $\lambda: X \to [0, 1]$ is defined by $\lambda(a) = 0$, $\lambda(b) = 0$, $\lambda(c) = 1$. Then (X, τ) is a fuzzy topological space. Let δ be a non fuzzy open set in (X, τ) where $\delta: X \to [0,1]$ is defined by $\delta(a) = 0$, $\delta(b) = 1$, $\delta(c) = 0$ then $\tau(\delta) = \{0, 1, \lambda, \delta, \lambda \lor \delta\}$ be the fuzzy topology on X and let Y= {a,b,c}, $\sigma = \{1, 0, \lambda\}$ is the fuzzy topology on Y, where $\lambda(a) = 0$, $\lambda(b) = 0$, $\lambda(c) = 1$.

If $f: (X, \tau) \to (Y, \sigma)$ defined by f(a) = a, f(b) = c, f(c) = b then $f^{-1}(\lambda) = \delta$ since δ is a fuzzy open set in (X, τ^*) . Then f is a fuzzy δ -continuous function, but not a fuzzy continuous function.

4. NEW FORMS OF FUZZY GENERALIZED CONTINUITY BY SUITABLE CHOICE OF $\boldsymbol{\delta}$

Definition: 4.1

A fuzzy subset λ of a space (X, τ) is said to be fuzzy δ - generalized closed set (Briefly, fuzzy δ g-closed) if δ Cl $(\lambda) \leq \beta$ whenever $\lambda \leq \beta$ and β is fuzzy open in (X, τ) where δ Cl (λ) is given by δ Cl $(\lambda) = \wedge \{\gamma \leq 1 : \lambda \leq \gamma, \text{ whenever } \gamma \text{ is a fuzzy closed set } \tau^* \}$.

A fuzzy subset of X belonging to τ^* is denoted by fuzzy δ - open set, the complement of fuzzy δ -open set is denoted by fuzzy δ - closed set .

The family of all fuzzy δ - open set is denoted by $F\delta O(X)$ and the family of all δ -fuzzy closed sets is denoted by $F\delta C(X)$.

Definition: 4.2

A function $f : (X, \tau) \to (Y, \sigma)$ is called a fuzzy δ -continuous function if $f^{-1}(\lambda)$ is a δ -fuzzy closed set in (X, τ) , for every closed set λ in (Y, σ) .

Definition: 4.3

A function $f : (X, \tau) \to (Y, \sigma)$ is called δg -fuzzy continuous function. if $f^{-1}(\lambda)$ is a fuzzy δg - closed set in (X, τ) , for every closed set λ in (Y, σ) .

Preposition : 4.4

For a fuzzy subset of a space (X, τ) and a function $f : (X, \tau) \to (Y, \sigma)$ from the definition stated above, we have the following diagram of implications.

fuzzy continuous function	$(3) \rightarrow$	g-fuzzy continuous function
(1)↓		\downarrow (4)

fuzzy δ -continuous function (2) \rightarrow fuzzy δ g- continuous function

Proof

- Since f is a fuzzy continuous function then f⁻¹(λ) is a fuzzy open set in (X, τ) for every fuzzy open set λ in (Y, σ) but every fuzzy open set in (X, τ) is a fuzzy open set in (X, τ*) => f⁻¹(λ) is a fuzzy δ- open set in (X, τ*) for every fuzzy open set λ in (Y, σ) => f is a fuzzy δ-continuous function.
- 2) Since f is a δ-fuzzy continuous function then f⁻¹(λ) is a fuzzy δ-closed set in (X, τ) for every fuzzy closed set λ in (Y, σ). But every fuzzy δ- closed set in (X, τ) is a fuzzy δg-closed set in (X, τ)=> f⁻¹(λ) is a fuzzy δg- closed set in (X, τ) for every fuzzy closed set λ in (Y, σ) => f is a fuzzy δg-continuous function.
- 3) Since f is a fuzzy continuous function then $f^{-1}(\lambda)$ is a fuzzy closed set in (X,τ) for every fuzzy closed set λ in (Y,σ) But every fuzzy closed set in (X,τ) is a g-fuzzy closed set in (X,τ) then $f^{-1}(\lambda)$ is a g-fuzzy closed set in (X, τ) for every fuzzy closed set λ in $(Y, \sigma) => f$ is a g-fuzzy continuous function.
- 4) Since f is g-fuzzy continuous function then f⁻¹(λ) is a g-fuzzy closed set in (X,τ) is a fuzzy δ-closed set in (X,τ*) => every fuzzy δ-closed set is a δg-fuzzy closed set => f⁻¹(λ) is a δg-fuzzy closed set in (X, τ*) for every fuzzy

closed set λ in (Y, σ) => f is a fuzzy δ g- continuous function.

Example: 4.6

Let X = Y = {a, b, c} Define fuzzy sets λ , δ , β : X = Y \rightarrow [0, 1] by the equation $\lambda(a) = 0.5$, $\lambda(b) = 0$, $\lambda(c) = 0$ $\delta(a) = 0$, $\delta(b) = 0.6$, $\delta(c) = 0$, and $\beta(a) = 0.6$, $\beta(b) = 0.6$, $\beta(c) = 1$ then

 $\tau = \{1, 0, \lambda, \beta\}$ is a fuzzy topology on X and $\sigma = \{1, 0, \delta\}$ is a fuzzy topology on Y. Let δ be the non fuzzy open set in (X, τ) then $\tau (\delta) = \{1, 0, \lambda, \delta, \lambda \lor \delta\}$. Let $\lambda_1(a) = 0.4$, $\lambda_1(b) = 0$, $\lambda_1(c) = 0$ be the fuzzy subset in (X, τ) . If $f : (X, \tau) \to (Y, \sigma)$ defined by,

- a) f(a) = a, f(b) = b and f(c) = c then f is a fuzzy δ -continuous function but not a fuzzy continuous function.
- b) f (a) = f (c) = b, and f (b) = a then f is a fuzzy g-continuous function but not a fuzzy continuous function.

5. ON FUZZY δg-CONTINUOUS FUNCTION

Definition: 5.1

A mapping $f:(X,\tau)\to(Y,\sigma)$ is said to be fuzzy δ -irresolute (briefly, $f\delta$ -irresolute) if $f^{-1}(\lambda)$ fuzzy δ -closed set in X, for every closed set λ in Y.

Definition : 5.2

A mapping $f:(X,\tau)\to(Y,\sigma)$ is said to be fuzzy δ -generalized irresolute (briefly, f δ g-irresolute) if $f^{-1}(\lambda)$ is f δ g-closed set in X, for every δ g-closed set λ in Y.

Theorem : 5.1

Every $f\delta g$ -irresolute mapping is $f\delta g$ -continuous.

Proof:

Let $f : (X, \tau) \to (Y, \sigma)$ is fog-irresolute. Let λ be a fuzzy closed set in Y. Then λ is fog-closed fuzzy set in Y. Since f is fog-irresolute. $f^{-1}(\lambda)$ is fog-closed set in X. Hence f is fog-continuous.

Remark : 5.1

However the converse of the above theorem need not be true as seen from the following example.

Example : 5.1

Let $X = Y = \{a, b, c\}$. Define fuzzy sets λ , δ_1 , $\delta_2 : X \rightarrow [0, 1]$ by the equation , $\lambda (a) = 0.5$, $\lambda (b) = 0$, $\lambda (c) = 1$,

 $\delta_1(a) = 0,$ $\delta_1(b) = 0.6,$ $\delta_1(c) = 0,$ $\delta_2(a) = 0,$ $\delta_2(b) = 0,$ $\delta_2(c) = 0.7$

and $\gamma : Y \rightarrow [0, 1]$ defined by $\gamma(a) = 1$, $\gamma(b) = 0.5$, $\gamma(c) = 0$.

 $\tau = \{1, 0, \lambda\}$ is a fuzzy topology on (X, τ) . $\sigma = \{1, 0, \gamma\}$ is a fuzzy topology on (Y, σ) . Let δ_1 be the non fuzzy open set in (X, τ) , then $\tau(\delta_1) = \{1, 0, \lambda, \delta_1, \lambda \lor \delta_1\}$ and δ_2 be the non fuzzy open set in (Y,σ) , then $\sigma(\delta_2)=\{1, 0, \gamma, \delta_2, \gamma \lor \delta_2\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = b, f(b) = a, f(c) = c, then f is fuzzy δg -continuous function. But f is not f δg -irresolute.

Definition:5.3

A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be fuzzy δ -closed mappings if $f(\lambda)$ is fuzzy δ -closed in (Y, σ) , for every fuzzy closed set λ in X.

Definition:5.4

A mappings $f : (X, \tau) \to (Y, \sigma)$ is said to be fuzzy δg -closed mappings if $f(\lambda)$ is fuzzy δg -closed in (Y, σ) , for every fuzzy closed set λ in X.

Definition:5.5

If every fuzzy δg -closed in X is f δ -closed in X, then the space can be denoted as $f\delta T_{1/2}$ -space.

Theorem:5.2

A fuzzy topological space (X, τ) is $f\delta T_{1/2}$ -space if and only if $F\delta O(X, \tau) = FG\delta O(X, \tau)$.

Proof:(Necessity)

Let (X, τ) be $f\delta T_{1/2}$ -space.Let $\lambda \in FG\delta O(X, \tau)$, then $1-\lambda$ is a fog-closed set.Thus $\lambda \in F\delta O(X, \tau)$. Hence $F\delta O(X, \tau) = FG\delta O(X, \tau)$.

(sufficiency)

Let $F\delta O(X, \tau) = FG\delta O(X, \tau)$. Let λ is a f δ g-closed.Then 1- λ is a f δ g-open.Hence 1- $\lambda \in F\delta O(X, \tau)$.Thus λ is a f δ -closed set.Therefore (X, τ) is a f $\delta T_{1/2}$ -space.

Theorem:5.3

Let $f: (X, \tau) \to (Y, \sigma)$ be fog-continuous. Then f is fuzzy δ -continuous if (X, τ) is $f\delta T_{1/2}$ -space.

Proof:

Let λ be a fuzzy closed of (Y, σ) . Since f is f δ g-continuous, f⁻¹(λ) is f δ g-closed set of (X, τ) . Again (X, τ) is a f δ T_{1/2}-space and hence f⁻¹(λ) is a f δ -closed set of (X, τ) . This implies that f is fuzzy δ -continuous.

Example:5.2

Let $X = Y = \{a, b, c\}$. Define fuzzy sets $\lambda, \delta : X \rightarrow [0, 1]$ by the equation ,

 λ (a) = 0.5, λ (b) = 0, λ (c) = 1,

 $\delta(a) = 0, \ \delta(b) = 0.6, \ \delta(c) = 0,$

and $\gamma : Y \rightarrow [0, 1]$ defined by $\gamma(a) = 1$, $\gamma(b) = 0.5$, $\gamma(c) = 1$.

 $\tau = \{1, 0, \lambda\}$ is a fuzzy topology on (X, τ) . $\sigma = \{1, 0, \gamma\}$ is a fuzzy topology on (Y, σ) . Let δ be the non fuzzy open set in (X, τ) , then $\tau (\delta) = \{1, 0, \lambda, \delta, \lambda \lor \delta\}$. Let $f : (X, \tau) \to (Y, \sigma)$ defined by f (a) = b, f (b) = a, f (c) = c, then f is fuzzy δg -continuous function. But λ is not $f \delta T_{1/2}$ -space as λ is not $f \delta$ -closed set of (X, τ) . Then f is not fuzzy δ -continuous.

REFERENCES

- [1] Azad K.K, "On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity", J.math. Appl, 82(1981), pp.14-32.
- [2] Balasubramanian.G. 1992, "On extensions of fuzzy topologies", No.3, pp.239-244.
- [3] Balasubramanian.G and Sundram.P.1997, "On some generalized of fuzzy continuous functions", Fuzzy sets and systems 86, PP. 93-100.
- [4] G. Balasubramanian, "On fuzzy pre-seperation axioms", Bull Calcutta mat. Soc 90(6), (1998), pp.427-434.
- [5] C.L.Chang, "Fuzzytopologicalspace", J.Math Anal Appl, 24,(1968), pp. 182-190.
- [7] L.A.Zadeh, "Fuzzy sets", Information and Control 8, (1965), pp.338-353.