Proof for Goldbach's Strong Conjecture

Rushal Sohal
Student
The Lexicon International School, Wagholi, Pune, India.

Abstract

In this paper, we will give a simple solution/proof for the Goldbach's strong conjecture (called the "strong" or "binary").

Keywords: Prime number formula, Goldbach's strong conjecture

1. INTRODUCTION

Goldbach's original conjecture (sometimes called the "ternary" Goldbach conjecture), written in a June 7, 1742 letter to Euler, states "at least it seems that every number that is greater than 2 is the sum of three primes" (Goldbach 1742; Dickson 2005). Note that here Goldbach considered the number 1 to be a prime, a convention that is no longer followed. As re-expressed by Euler, an equivalent form of this conjecture (called the "strong" or "binary" Goldbach conjecture) asserts that all positive even integers ≥ 4 can be expressed as the sum of two primes. Two primes (p, q) such that $p+q=2 n$ for n a positive integer are sometimes called a Goldbach partition [1]. In this paper, we will give a simple solution to the Goldbach's strong conjecture. We will first make a general formula for primes (>2), and then evaluate all possibilities.

2. METHODS

Lemma: Every prime number can be written in the form $4 k \pm 1$; where $k \in I^{+}$

Proof:

A number can be expressed as $(4 k)$ or $(4 k+1)$ or $(4 k+2)$ or $(4 k+3)($ or $4 k-1)$.

Since, all prime numbers (>2) are odd, therefore, we can rule out $(4 k)$ and $(4 k+2)$ as a possible expression for primes.
Thus, the only possible representations for primes are $(4 k+1)$ or $(4 k-1) ; k \in I^{+}$.
Let's say we have 4 consecutive numbers $(a),(a+1),(a+2),(a+3)$.
Out of these four, there will be 2 alternate even numbers, and out of them, at least one will be divisible by 4 (as out of every 4 consecutive numbers, one of them will definitely be divisible by 4 , and it has to be even).
Let the even numbers be $(a+1)$ and $(a+3)$.
CASE I: $(a+1)$ is divisible by 4
If $(a+2)$ is a prime number, it can be written as $(4 p+1)$; where $(a+1)=4 p ; p \in$ I^{+}.

AND

If (a) is a prime number, it can be written as $(4 p-1)$; where $(a+1)=4 p ; p \in I^{+}$.

CASE II: $(a+3)$ is divisible by 4
If $(a+2)$ is a prime number, it can be written as $(4 q-1)$; where $(a+3)=4 q ; q \in$ I^{+}.

AND
If (a) is a prime number, it can be written as $(4(q-1)+1)$; where $(a+3)=$ $4 q$ and $(a-1)=4(q-1) ; q \in I^{+}$.
[since $(a+3)$ is a multiple of $4 \Rightarrow\{(a+3)-4=(a-1)\}$ is also a multiple of 4]
Similarly, the same reasoning can be applied when taking (a) and ($a+2$) as even.
Thus, prime numbers (>2) are of the form $(4 k \pm 1)$; where $k \in I^{+}$.
Remark: Thus, every prime number, $p(>2)$, can be written as:

$$
p=(4 k+1) \text { or }(4 k-1)=(4 k \pm 1) ; \text { where } k \in I^{+}
$$

Examples: $3=(4 \times 1)-1$,

$$
\begin{aligned}
& 5=(4 \times 1)+1, \\
& 7=(4 \times 2)-1, \\
& 17389=(4 \times 4347)+1, \text { and so on. }
\end{aligned}
$$

Conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. [2]

Proof:

Let there be 2 prime numbers (>2), namely, p_{1} and p_{2}.

$$
\begin{align*}
\therefore & p_{1}=4 n \pm 1 ; n \in I^{+} \tag{1}\\
& p_{2}=4 m \pm 1 ; m \in I^{+} \tag{2}\\
\Rightarrow & p_{1}+p_{2}=(4 n \pm 1)+(4 m \pm 1)
\end{align*}
$$

Thus, we have only 4 possibilities:
I. $(4 n+1)+(4 m+1)$
II. $(4 n+1)+(4 m-1)$
III. $(4 n-1)+(4 m+1)$
IV. $(4 n-1)+(4 m-1)$

Here, possibilities I and IV (same sign of 1s), and II and III (opposite signs of 1s) are similar.

CASE I: Considering possibilities I and IV
Therefore,

$$
\begin{aligned}
p_{1}+p_{2}=(4 n+1)+(4 m+ & 1) \text { or } p_{1}+p_{2}=(4 n-1)+(4 m-1) \\
& \Rightarrow p_{1}+p_{2}=4(m+n) \pm 2 \\
& \Rightarrow p_{1}+p_{2}=2[2(m+n) \pm 1] \\
& \Rightarrow p_{1}+p_{2}=2 f ; \text { where } f=[2(m+n) \pm 1]
\end{aligned}
$$

Thus, f is a positive odd integer $(\because$ it is of the form $2 q \pm 1)$ except $1\{\because$ minimum value of m and $n=1[$ from (1)and (2) $] \Rightarrow$ minimum value of $[2(m+n) \pm 1]=3\}$

$$
\therefore f \in\{3,5,7 \ldots\}
$$

CASE II: Considering possibilities II and III
Therefore,

$$
\begin{aligned}
p_{1}+p_{2}=(4 n+1)+(4 m & -1) \text { or } p_{1}+p_{2}=(4 n-1)+(4 m+1) \\
& \Rightarrow p_{1}+p_{2}=4(m+n) \\
& \Rightarrow p_{1}+p_{2}=2[2(m+n)] \\
& \Rightarrow p_{1}+p_{2}=2 f^{\prime} ; \text { where } f^{\prime}=[2(m+n)]
\end{aligned}
$$

Thus, f^{\prime} is a positive even integer $(\because$ it is of the form $2 q)$ except $2\{\because$ minimum value of m and $n=1[$ from (1)and (2)] minimum value of $[2(m+n)]=4\}$

$$
\therefore f^{\prime} \in\{4,6,8 . \ldots\}
$$

Hence, on combining cases I and II, we obtain

$$
\begin{gathered}
p_{1}+p_{2}=2 F ; \text { where } F \in f \cup f^{\prime} \text {, i.e. } F \in I^{+}-\{1,2\} \\
\therefore F \in\{3,4,5,6 \ldots\}
\end{gathered}
$$

Thus, F is a positive integer except 1 and 2 , and minimum value of $2 F=6$. This means that every even integer $(2 F \in\{6,8,10 .\}$.$) will have atleast one$ pair of primes $\left(p_{1}\right.$ and $\left.p_{2}\right)$ such that $p_{1}+p_{2}=2 F$

Thus, every even integer (>4) can be expressed as the sum of two primes.
The only case we are left with is - the even integer 4 . We know that 4 can be expressed as the sum of two 2 s , i.e. $4=2+2$, thus, covering all the even integers (since 2 is a prime number, therefore, 4 is the sum of two primes).

3. CONCLUSION

Therefore, every even integer (>4) can be expressed as the sum of two primes (of the form $4 k \pm 1$; where $k \in I^{+}$), and the even integer 4 can be expressed as the sum of two 2s. Thus, every even integer greater than 2 can be expressed as the sum of two primes, and hence, proving the Goldbach's Strong Conjecture.

4. REFERENCES

[1] Goldbach, C. Letter to L. Euler, June 7, 1742.
[2] Hazewinkel, Michiel, ed. (2001), "Goldbach problem", Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4

