The Non - Split Distance - 2 Domination in Graphs

K.Ameenal Bibi ${ }^{1}$, A.Lakshmi ${ }^{2}$ and R.Jothilakshmi ${ }^{3}$
1,2 PG and Research Department of Mathematics, D.K.M College for women (Autonomous), India.
${ }^{3}$ PG Department of Mathematics, Mazharul Uloom College, India.

Abstract

A distance -2 dominating set $\mathrm{D} \subseteq \mathrm{V}$ of a graph G is a non-split distance -2 dominating set if the induced sub graph <V-D> is connected. The non-split distance -2 domination number $\gamma_{n s \leq 2}(G)$ is the minimum cardinality of a nonsplit distance - 2 dominating set. In this paper, we define the notion of non-split distance -2 domination in a graph. We get many bounds on non- split distance -2 domination number. Exact values of this new parameter are obtained for some standard graphs. Nordhaus - Gaddum type results are also obtained for this new parameter.

Keywords: Dominating set, non-split dominating set, distance -2 dominating set, non-split distance -2 dominating set, non- split distance -2 domination number.

1. INTRODUCTION

All graphs considered here are simple, finite and undirected. Let n and m denote the order and size of a graph G . We use the terminology of [12].Let $\Delta(G)(\delta(G))$ denote the maximum (minimum) degree. The independence number $\beta_{0}(\mathrm{G})$ is the maximum cardinality among the independent set of vertices of G. The lower independence number $i(G)$ is the minimum cardinality among the maximum independent set of vertices of G . The vertex covering number $\alpha_{0}(\mathrm{G})$ is the minimum cardinality of vertex covering of G. The girth $g(G)$ of a graph G is the length of a shortest cycle in G. The circumference $\mathrm{c}(\mathrm{G})$ is the length of a longest cycle. The radius of G is $\operatorname{rad}(\mathrm{G})=$ $\min \{\operatorname{ecc}(\mathrm{v}): \mathrm{v} \in V\}$ and $\operatorname{diam}(\mathrm{G})=\max \{\operatorname{ecc}(\mathrm{v}): \mathrm{v} \in V\}$, where $\operatorname{ecc}(\mathrm{v})$ is eccentricity of a
vertex which is defined as $\max \{$ dis $(\mathrm{u}, \mathrm{v}): \mathrm{v} \in V$ \}in [11].
A non empty set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is said to be a dominating set of G if every vertex not in D is adjacent to at least one vertex in D . A dominating set $\mathrm{D} \subseteq \mathrm{V}$ of a graph G is a nonsplit (split) dominating set if the induced sub graph <V-D> is connected (disconnected). The non-split (split) domination number $\gamma_{n s}(G)\left(\gamma_{s}(G)\right)$ is the minimum cardinality of a non-split (split) dominating set. A set D of vertices in a graph G is a distance -2 dominating set if every vertex in V-D is within distance 2 of atleast one vertex in D . The distance -2 domination number $\gamma_{\leq 2}(G)$ is the minimum cardinality of a distance -2 dominating set in G . A distance -2 dominating set $\mathrm{D} \subseteq \mathrm{V}$ of a graph G is a split distance -2 dominating set if the induced sub graph $\langle\mathrm{V}-\mathrm{D}\rangle$ is disconnected. The split distance -2 domination number $\gamma_{s \leq 2}(G)$ is the minimum cardinality of a split distance -2 dominating set.

Kulli V.R. and Janakiram B. introduced the concept of non-split domination in graph in [13]. The purpose of this paper is to introduce the concept of non-split distance -2 domination in graphs.

Definition 1.1

A distance -2 dominating set $\mathrm{D} \subseteq \mathrm{V}$ of a graph G is a non-split distance -2 dominating set if the induced sub graph $\langle\mathrm{V}$ - D\rangle is connected. The non-split distance 2 domination number $\gamma_{n \leq \leq 2}(G)$ is the minimum cardinality of a non-split distance -2 dominating set.

The minimal non-split distance -2 dominating set in a graph G is a non-split distance 2 dominating set that contains no non-split distance -2 dominating set as a proper subset.

The distance -2 open neighborhood of a vertex $v \in V$ is the set, $N_{\leq 2}(v)$ of vertices within a distance of two of (v).

Example: 1.2

Figure. 1

Here $D=\{1,8\}, \gamma_{n s \leq 2}(G)=2$
2. EXACT VALUES OF $\gamma_{n s \leq 2}(G)$ FOR SOME STANDARD GRAPHS.

2.1: Observation:

1. For any path P_{n}, for $\mathrm{n} \geq 7$

$$
\gamma_{n s \leq 2}\left(P_{n}\right)=n-4
$$

2. For any cycle C_{n}, for $\mathrm{n} \geq 5$

$$
\gamma_{n \leq \leq 2}\left(C_{n}\right)=n-4
$$

3. For any wheel graph W_{n}, for $\mathrm{n} \geq 3$

$$
\gamma_{n s \leq 2}\left(W_{n}\right)=1
$$

4. For any friendship graph F_{n}, for $n \geq 2$

$$
\gamma_{n \leq \leq 2}\left(F_{n}\right)=1
$$

5. For any complete graph K_{n}, for $\mathrm{n} \geq 3$

$$
\gamma_{n \leq \leq 2}\left(K_{n}\right)=1
$$

6. For any star graph $K_{1, m}$, for $m \geq 1$

$$
\gamma_{n s \leq 2}\left(K_{1, m}\right)=1
$$

7. For any complete bipartite graph $\mathrm{K}_{\mathrm{n}, \mathrm{m}}$, for $\mathrm{m} \geq \mathrm{n}$,

$$
\gamma_{n s \leq 2}\left(K_{n, m}\right)=1
$$

8. For any Book graph B_{n}, for $\mathrm{n} \geq 3$

$$
\gamma_{n \leq \leq 2}\left(B_{n}\right)=1
$$

9. For any helm graph H_{n}, for $\mathrm{n} \geq 3$

$$
\gamma_{n s \leq 2}\left(H_{n}\right)=1
$$

3. BOUNDS ON THE NON-SPLIT DISTANCE -2 DOMINATION NUMBER

$\gamma_{n s \leq 2}(G)$

Theorem 3.1
For any graph G, $\gamma_{\leq 2}(G) \leq \gamma_{n s \leq 2}(G)$
Proof
Every non-split distance -2 dominating set of G is a distance -2 dominating set of G ,
We have $\gamma_{\leq 2}(G) \leq \gamma_{n s \leq 2}(G)$

Note 3.2

For any graph G, $\gamma_{\leq 2}(G) \leq \gamma_{s \leq 2}(G)$

Theorem 3.3

For any graph G, $\gamma_{n s \leq 2}(G) \leq \gamma_{n s}(G)$

Proof

Every non-split dominating set of G is a non-split distance -2 dominating set of G ,
We have $\gamma_{n s \leq 2}(G) \leq \gamma_{n s}(G)$

Theorem 3.4

For any graph G, $\gamma_{\leq 2}(G) \leq \min \left(\gamma_{n s \leq 2}(G), \gamma_{s \leq 2}(G)\right)$

Proof

Every non-split distance -2 dominating set and every split distance -2 dominating set of G is a distance -2 dominating set of G ,

We have $\gamma_{\leq 2}(G) \leq \gamma_{n s \leq 2}(G), \gamma_{\leq 2}(G) \leq \gamma_{s \leq 2}(G)$
Hence $\gamma_{\leq 2}(G) \leq \min \left(\gamma_{n s \leq 2}(G), \gamma_{s \leq 2}(G)\right)$

Proposition 3.5

For any graph G, $\gamma(G)=\gamma_{n s}(G)=\gamma_{\leq 2}(G)=\gamma_{n s \leq 2}(G)$ if and only if G is a wheel graph W_{n}.

Proposition 3.6

For any graph G, $\gamma_{n \leq \leq 2}(G)=\gamma_{s \leq 2}(G)=\gamma_{s}(G)=\gamma(G)=\gamma_{\leq 2}(G)$ if and only if G is a star graph $\mathrm{K}_{1, \mathrm{~m}}$, for $\mathrm{m}>1$.

Proposition 3.7

For any graph G, $\gamma_{n s \leq 2}(G)=\gamma_{s \leq 2}(G)=\gamma_{s}(G)=\gamma(G)=\gamma_{\leq 2}(G)$ if and only if G is a friendship graph Fn.

Proposition 3.8

For any graph G, $\gamma_{\leq 2}(G)=\gamma_{n s \leq 2}(G)$ if and only if G is a bipartite graph $K_{n, m}$, for $\mathrm{n}<$ m.

Proposition 3.9

For any graph G, $\gamma_{\leq 2}(G)=\gamma_{n \leq \leq 2}(G)=\gamma_{n s}(G)=\gamma(G)$ if and only if G is a complete graph K_{n}, for $\mathrm{n}>2$.

Theorem 3.10
A non-split distance -2 dominating set D of G is minimal if and only if for each vertex $v \in D$, one of the following conditions is satisfied.
(i) There exists a vertex $u \in V-D$ such that

Case (a): $N_{\leq 2}(u) \cap D=D$ when D is connected.
Case (b): $N_{\leq 2}(u) \cap D=\{v\}$ when D is disconnected.
(ii) v is an isolated vertex in 〈D>
(iii) $N_{\leq 2}(u) \cap(V-D) \neq \varnothing$

Proof

Suppose D is a minimal non-split distance dominating set of G.
Suppose the contrary.
That is, if there exists a vertex $v \in D$, such that v does not satisfy any of the given conditions, then by theorem given by Kulli V.R and Janakiram B.(1997), there exists a distance -2 dominating set $D_{1}=D-\{v\}$ such that the induced sub graph $\left\langle V-D_{1}\right\rangle$ is connected. This implies that D_{1} is a non-split distance -2 dominating set of G contradicting the minimality of D . Therefore, the condition is necessary.

Sufficiency follows from the given conditions.

Theorem 3.11

If H is a connected spanning sub graph of G , then $\gamma_{n s \leq 2}(G) \leq \gamma_{n s \leq 2}(H)$

Theorem 3.12

For any graph $\mathrm{G}, \gamma_{n s \leq 2}(G)=p-\Delta(G)$ if and only if G is a star graph $\mathrm{K}_{1, \mathrm{~m}}$, for $\mathrm{m}>$

1 ,where p is number of vertices.

Theorem 3.13

For any graph G, $\gamma_{n \leq \leq 2}(G)=\delta(G)$ if and only if G is a helm graph Hn .

Theorem 3.14

For any graph G, which is not a tree then $\gamma_{n s \leq 2}(G) \leq c(G)$ where $c(G)$ is circumference of a graph G.

Theorem 3.15

For any graph G, which is not a tree then $\gamma_{n s \leq 2}(G) \leq g(G)$ where $g(G)$ is girth of a graph G.

Theorem 3.16

Let G be any connected graph of order greater than or equal to 3 , then $\gamma_{n s \leq 2}(G) \leq$ $n-3$, where n is the number of vertices.

Proof

Since G is connected, there is a spanning tree T of G with ($n-1$) vertices. If v is a pendant vertex of T then ($\mathrm{n}-3$) vertices of T other than v form a minimal non-split distance -2 dominating set of G , hence $\gamma_{n s \leq 2}(G) \leq n-3$.

Nordhas - Gaddum Type results

Theorem 3.17

Let G be a graph such that both G and \bar{G} have no isolates. Then,
(i) $\gamma_{n s \leq 2}(G)+\gamma_{n s \leq 2}(\bar{G}) \leq 2(n-3)$
(ii) $\gamma_{n s \leq 2}(G) \cdot \gamma_{n s \leq 2}(\bar{G}) \leq(n-3)^{2}$

Proof

The results follow from Theorem 3.16

Theorem 3.18

For any graph G, $\gamma_{n s \leq 2}(G) \leq n-\Delta(G)$

Theorem 3.19

For any tree $\mathrm{T}_{\mathrm{n}}, \gamma_{n s \leq 2}(G) \leq n-p$ where n is number of vertices and p is number of end vertices.

Note 3.20

For any tree T_{n}, which is a star graph $\gamma_{n s \leq 2}(G)=n-p$ where n is number of vertices and p is number of end vertices.

Theorem 3.21 (Kulli and Janakiram, 1997)
For any graph G, $\gamma_{s}(G) \leq \alpha_{0}(G)$
Theorem 3.22

For any graph G, $\gamma_{n s \leq 2}(G) \leq \alpha_{0}(G)$
Proof

Since $\gamma_{n s \leq 2}(G) \leq \gamma_{n s}(G)$ and $\gamma_{n s}(G) \leq \alpha_{0}(G)$ [By Theorem 3.3]
We have $\gamma_{n s \leq 2}(G) \leq \alpha_{0}(G)$

Theorem 3.23

For any graph G, $\gamma_{\leq 2}(G)+\gamma_{n s \leq 2}(G) \leq n$
Proof
Since $\gamma(G) \leq \beta_{0}(G), \gamma_{\leq 2}(G) \leq \gamma(G)$ and $\gamma_{n s \leq 2}(G) \leq \alpha_{0}(G)$ [By Theorem 3.22]
Thus $\gamma_{\leq 2}(G)+\gamma_{n s \leq 2}(G) \leq \alpha_{0}(G)+\beta_{0}(G)$
We have $\gamma_{\leq 2}(G)+\gamma_{n s \leq 2}(G) \leq n$

Theorem 3.24

For any graph G, $i(G)+\gamma_{n s \leq 2}(G) \leq n$
Proof
Since $i(G) \leq \beta_{0}(G)$, and $\gamma_{n s}(G) \leq \alpha_{0}(G)$ [By Theorem 3.22]
Thus $i(G)+\gamma_{n s \leq 2}(G) \leq \alpha_{0}(G)+\beta_{0}(G)$
We have $i(G)+\gamma_{n s \leq 2}(G) \leq n$

Lemma 3.24

For $k \geq 1$, every connected graph G has a spanning tree T such that $\gamma_{k}(G)=\gamma_{k}(T)$
in [24]

Lemma 3.25

For $k \geq 1$, every connected graph G has a spanning tree T such that $\gamma_{n s \leq 2}(G)=$ $\gamma_{n s \leq 2}(T)$

Proof

Since $\gamma_{\leq 2}(G) \leq \gamma_{n \leq \leq 2}(G)$ and $\gamma_{\leq 2}(T)=\gamma_{\leq 2}(G)$ [By Theorem 3.1 and Lemma 3.25]
We have $\gamma_{n s \leq 2}(G)=\gamma_{n s \leq 2}(T)$

Theorem 3.26

For $k \geq 1$, if G is a connected graph with diameter d , then $\gamma_{k}(G) \geq \frac{d+1}{2 k+1}$ in [24]

Theorem 3.27

For any graph G is a connected graph with diameter d, then $\gamma_{n s \leq 2}(G) \geq \frac{d+1}{2 k+1}$, where $\mathrm{k}=2$.

Proof
Since $\gamma_{\leq 2}(G) \leq \gamma_{n \leq \leq 2}(G)$ and $\gamma_{\leq 2}(G) \geq \frac{d+1}{2 k+1}$ [By Theorem 3.26]
We have $\gamma_{n s \leq 2}(G) \geq \frac{d+1}{5}$

Theorem 3.28

If $\mathrm{G}=\mathrm{P}_{\mathrm{n}}$ where $n \equiv 0 \bmod (2 k+1)$, then $\gamma_{k}(G)=\frac{\operatorname{diam}(G)+1}{2 k+1}$ in [24]
Theorem 3.29
If $\mathrm{G}=\mathrm{P}_{\mathrm{n}}$ where $n \equiv 0 \bmod (2 k+1)$, then $\gamma_{n s \leq 2}(G)=\frac{\operatorname{diam}(G)+1}{2 k+1}$ where $\mathrm{k}=2$.
Proof

Since $\gamma_{\leq 2}(G) \leq \gamma_{n s \leq 2}(G)$ and $\gamma_{\leq 2}(G)=\frac{\operatorname{diam}(G)+1}{2 k+1}$ [By Theorem3.28]
We have $\gamma_{n s \leq 2}(G) \geq \frac{\operatorname{diam}(G)+1}{5}$

Theorem 3.30

For any graph G is a connected graph with radius r , then $\gamma_{k}(G) \geq \frac{2 r}{2 k+1}$ in [24]

Theorem 3.31

For any graph G is a connected graph with radius r, then $\gamma_{n s \leq 2}(G) \geq \frac{2 r}{2 k+1}$, where $\mathrm{k}=2$.

Proof
Since $\gamma_{\leq 2}(G) \leq \gamma_{n s \leq 2}(G)$ and $\gamma_{\leq 2}(G) \geq \frac{2 r}{2 k+1}$ [By Theorem 3.30]
We have $\gamma_{n s \leq 2}(G) \geq \frac{2 r}{5}$

Theorem 3.32

For any graph G is a connected graph with girth g , then $\gamma_{k}(G) \geq \frac{g}{2 k+1}$ in [24]
Theorem 3.33
For any graph G is a connected graph with girth g, then $\gamma_{n s \leq 2}(G) \geq \frac{g}{2 k+1}$, where $\mathrm{k}=2$.

Proof

Since $\gamma_{\leq 2}(G) \leq \gamma_{n s \leq 2}(G)$ and $\gamma_{\leq 2}(G) \geq \frac{g}{2 k+1}$ [By Theorem 3.33]
We have $\gamma_{n s \leq 2}(G) \geq \frac{g}{5}$

CONCLUSION

In the communication network, n cities are linked via communication channels. A transmitting group is a subset of those cities that are able to transmit messages to every city in the network. Such a transmitting group is nothing else than a non-split dominating set in the network graph, and non-split distance -2 domination number of this graph is the minimum number of disjoints transmitting groups in the network.

REFERENCE

[1] Ameenal Bibi, K. and Selvakumar, R (2008).The Inverse split and non-split domination numbers in graph. Pros. of International Conference on Mathematics and Computer Science, ICMCS 2008,Dept,of Mathematics, Loyola college, Chennai-600 034.July 25-26.
[2] Ameenal Bibi, K. and Selvakumar, R (2009).The Inverse strong non-split rdomination number of a graph. Proc. of the National Conference on Industrial Applications of Mathematics, NCMA 2009, PG and Research Dept. of

Mathematics. Sacred Heart College (Autonomous) Tirupattur, Vellore Dist., March 12-13,pp. 58-64.
[3] Ameenal Bibi, K. and Selvakumar, R (2010).The Inverse split and non-split domination numbers in graph. International Journal of Computer Applications (0975-8887) Volume 8 - N0.7, October 2010.
[4] Cockayne, E.J. Dawes, R.M. and Hedetniemi, S.T. (1980). Total domination in graphs. Networks, vol.10.pp.211-219.
[5] Cockayne, E.J..Hedetniemi, S.T Towards a Theory of Domination in Graphs, Networks, 7:247-261.
[6] Domke G.S., Dunbar J.E. and Markus, L.R (2007). The Inverse domination number of a graph, Feb' (2007).
[7] Favaron, O. and Kratsch, D.: Ratios of domination parameters, Advances in graph theory, viswa, Gulbarga (1991), 173-182.
[8] Fraisse, P. A note on distance dominating cycles. Discrete Math. 71 (1988), 89-92.
[9] Hansberg,A. Meierling, D. and Volkmann, L. Distance domination and distance irredundance in graphs. Electronic J.Combin. 14 (2007), 35.
[10] Harary. F (1969) Graph Theory, Addison - Wesley Reading Mars.
[11] Haynes, T.W., Hedetniemi .S.T. and Slater.P.J1998. Domination in Graphs: Advanced Topics, Marcel Dekker Inc. New York, U.S.A.
[12] Haynes, T.W., Hedetniemi .S.T. and Slater.P.J1998b. Fundamentals of domination in Graphs, Marcel Dekkel Inc. New York, U.S.A.
[13] Henning, M.A. Oellermann, O.R.and Swart, H.C.: Bounds on distance domination parameters, J.Combin. Inform. System Sci 16 (1991) 11-18.
[14] Kulli, V.R. and Janakiram, B.The split domination number of a graph. Graph Theory Notes of New York, New York Academy of Sciences, XXXII.(1997) 16-19.
[15] Kulli, V.R and Janakiram, B. The strong split domination number of a graph. Acta Ciencia Indica, 32M. (2006) 715-720.
[16] Kulli, V.R and Janakiram, B. The non-split domination number of a graph. Indian J.Pure Appl. Math, (2000) 545-550
[17] Kulli, V.R and Janakiram, B. The strong non-split domination number of a graph. Internat. J. Management Systems,19. (2003) 145-156.
[18] Kulli, V.R and Sigarkanti, S.C (1991).Inverse dominating in graphs. National Academy Science Letters, 15.
[19] Theory of domination in graphs by Kulli, V.R. Vishwa International Publications, Gulbarga, India.
[20] Advances in domination theory by Kulli, V.R. is Vishwa International Publications, Gulbarga, India (2012).
[21] Meierling, D. and Volkmann, L.: A lower bound for the distance k-domination number of trees, Result. Math. 47 (2005), 335-339.
[22] Nordhaus, E.A and Gaddam, J.W (1956). On complementary graphs. Amer. Math. Monthly, Vol.63.pp.175-177.
[23] Ore, O.1962.Theory of Graphs. American Mathematical Society colloq. Publ., Providence, R1, 38.
[24] Randy Davila, Caleb Fast, Michael A. Henning and Franklin Kenter, Lower bounds on the distance domination number of a Graph, arXiv:1507.08745v1 [math.co] 31 jul 2015.
[25] Tian, F. and Xu, J.M. A note on distance domination numbers of graphs. Australasian j. Combin. 43 (2009), 181-190.

