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Abstract 

The purpose of this paper is to introduce and study some new class of 

definitions like         𝜇 -point closure and  𝑔𝜇 –regular space concerning 

generalized topological space. We obtain some characterizations and several 

properties of such definitions. This paper takes some investigations on 

generalized topological spaces with 𝑔𝜇 –closed sets and g𝜇 –closed sets.  
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1. INTRODUCTION 

This paper is concerned with the adaptation of the change of topology approach from 

topological topics to aspects of the theory of generalized topological spaces. This 

shows that “the change of generalized topology” exhibits some characteristic 

analogous to change of topology in the topological category. A general application of 

the change of generalized topology approach occurs when the spaces are ordinary 

topological spaces. In this case, the generalized topologies are families of 

distinguished subsets of a topological space which are not topologies but are 

generalized topologies. Some common examples of generalized topologies that are 
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associated with a given topological space. Consider the collection of all s.o, p.o, 𝛽-

open, 𝛼-open sets in the (ordinary) topology(X, 𝜏). Each collection is a generalized 

topology on X. In fact, the family of 𝛼-open set is a topology. But in general, the other 

there collections, namely, the family of s.o, p.o and 𝛽-open sets are not topologies on 

X. 

In 1992, Blumberg defined what he meant by a real-valued function on Euclidean 

space being densely approached at a point in its domain. Continuous functions satisfy 

his condition at each point of their domains. Since then, and particularly in the past 

four decade, a large number of properties closely related to the notion of continuity of 

a function have been introduced. The number of properties so large that different 

authors have used the same term for different concepts and other authors have 

resorted to exotic terms, some times because the natural term has already been pre-

empty. It turns out that many of these concepts are not new in the sense that if one is 

willing to change the topology on the domain and /or the range then the class of 

functions satisfying a particular property often coincides with the class of continuous 

functions under the new topologies from their point of view many of the results in the 

literature concerning such functions are essentially restatements in disguise of familiar 

properties of continuous functions. The main purpose of our paper is to make this 

more precise in generalized topology. 

In this paper we continue our study in the style of [5]. Section 2 is devoted to 

preliminaries and section 3 is devoted to a brief review of the 𝜇 – compact and 𝑔𝜇 –  

regular spaces and some new results are derived. The properties with which we shall 

be dealing in this paper are quite diverse and include among others, the property of 

being a zero set, or a 𝐺𝛿-set, being a(regularly) closed set, being a point closure, being 

a connected set or a compact set, being a strongly regular closed set etcetera. 

Intensive research on the field of generalized topological space  (X, µ) was done in the 

past ten years as the theory was developed by A.Csaszar[1], A.P.Dhana Balan[5]. For 

background material, paper[5] may be perused. The end or omission of proof will be 

denoted by ∎. 

 

2. PRELIMINARIES 

Let X be a set. A subset 𝜇 of exp X is called a generalized topology on X and (X, 𝜇) is 

called a generalized topological spaces [1] (abbr.GTS) if 𝜇 has the following 

properties: 

(i) φ  𝜇,    

(ii) Any union of elements of 𝜇 belongs to 𝜇.    
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A generalized topology 𝜇 is said to be strong [2] if X  𝜇. For the space (X, 𝜇), the 

elements of µ are called 𝜇-open sets and the complement of 𝜇-open sets are called  𝜇-

closed sets. For AX, we denote by 𝑐𝜇(A) the intersection of all 𝜇-closed sets 

containing A, that is the smallest 𝜇-closed set containing A, and by 𝑖𝜇(A), the union of 

all 𝜇-open sets contained in  A, that is the largest 𝜇-open set contained in A. It is easy 

to observe that 𝑐𝜇  and 𝑖𝜇 are idempotent and monotonic, where γ : exp X → exp X is 

said to idempotent if  and only if ABX implies γ(γ(A)) = γ(A) and monotonic if  

and only if ABX implies γ(A)  γ(B). It is also well known that from [3,4] that if 𝜇 

is a generalized topology on X and AX, xX then x 𝑐𝜇(A) if and only if xM𝜇  

M ∩ A ≠ φ and 𝑐𝜇(XA) = X 𝑖𝜇(A).                                

Definition 2.1: A subset A of (X, μ) is    

(i) 𝜇 -semiopen in X if A  𝑐𝜇(𝑖𝜇 (A)).    (ii) 𝜇 -preopen if A  𝑖𝜇 (𝑐𝜇(A)).   

(iii) 𝜇 -𝛽-open if A  𝑐𝜇(𝑖𝜇  (𝑐𝜇(A))).       (iv) 𝜇 -𝛼-open if A  𝑖𝜇(𝑐𝜇(𝑖𝜇 (A))).   

(v) 𝜇 -regular open if A = 𝑖𝜇 (𝑐𝜇(A)).  

The complement of 𝜇 -semi open, 𝜇-𝛼- open sets are 𝜇 - semi closed, 𝜇-𝛼- closed.     

 

Definition 2.2:  A GTS (X, 𝜇) is said to be     

(i) 𝜇- Hausdorff [11] if for any two distinct points x and y in X ,there exists disjoint 𝜇-

open sets U and V such that  x U, y V.                                                                                                                                                                                                                                                                                                                                       

(ii) 𝜇-regular [11] if for each 𝜇-closed set F and each point x∉F, there exists disjoint 

𝜇-open sets U and V such that x ∈U, F ⊆ V.                                                                                                                                                         

 

3. 𝝁 – COMPACT AND 𝒈𝝁 –  REGULAR SPACES                                                                                                 

Definition 3.1: A subset A of X is said to be a point closure if A is the 𝜇-closure of a 

singleton. In particular, A is said to be a 𝜇-point closure if it is the 𝜇-closure of a 𝜇-

open singleton set. A strong generalized topological space (SGT) X is called a 𝜇𝑇𝐷- 

space if x∈X, then there are 𝜇 -open set U and  𝜇 -closed set F such that U ∩ F = {x}.                                                                                          

Example 3.1:   (i) One point compactification is 𝜇-point closure.                                                                    

(ii) Every closed interval is the 𝜇-point closure of its 𝜇-s.o interval.                                               

(iii) X = {a,b,c}, 𝜇 ={𝜙,{a},{b},{a,b}}. 𝜇-closed = {X,{b,c},{a,c},{c}}.                                                   

Let A = {a,c}. Then A is a 𝜇-point closure of {a}.                                                                                              
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Result: Every 𝜇-point closure is 𝜇-closure.                                                                                                 

Theorem 3.1: Let X be a space and x𝜖X. Let A⊂X be 𝜇-point closure. Then A = X-

 ∪{ 𝜇 - 𝜇𝑥} where 𝜇𝑥 = {U: x ∈U ∈ 𝜇}.                                                                                                                                                   

Proof: Since A is 𝜇-point closure, we have A = 𝑐𝜇({x}) for some x𝜖X. Let y ∈ 𝑐𝜇({x}) 

= X - 𝑖𝜇(X-{x}). Then y ∉ 𝑖𝜇(X-{x}). Suppose U∈ 𝜇𝑦 ,then U ⊄X-{x}, Hence, x∈U. 
That is U ∈ 𝜇𝑥.  So, 𝜇𝑦 ⊂ 𝜇𝑥 and hence 𝜇 - 𝜇𝑥 ⊂ 𝜇 - 𝜇𝑦 . It follows that  ∪( 𝜇 - 𝜇𝑥) ⊂ 

∪( 𝜇 - 𝜇𝑦). This implies that y ∉ ∪ (𝜇 - 𝜇𝑦) and so y ∉ ∪ (𝜇 - 𝜇𝑥). Consequently, y 

∈X- ∪( 𝜇 - 𝜇𝑥). On the other hand, let y ∈∪( 𝜇 - 𝜇𝑥). Then we have y ∈ 𝑐𝜇({x}) by 

reversely the proof above. This proves that  𝑐𝜇({x}) =   X-∪(𝜇 - 𝜇𝑥) = A.  ∎                 

Definition 3.2:  Let X  be a space (i) Let x∈X and U ∈ 𝜇. Then x is called a 

representative element of U if U ⊂ 𝑉 for each V ∈ 𝜇𝑥. (ii) A space X is called a 𝑐𝑜-

spaceif 𝑐𝑜= X, where 𝑐𝑜is the set of all representative element of sets of 𝜇.                                                                                                                          

Result: Let A and B be subsets of a 𝑐𝑜-space. Then (i)  𝑖𝜇(A∩B) = 𝑖𝜇(A) ∩  𝑖𝜇(B).                                

(ii) 𝑐𝜇(A∪B) = 𝑐𝜇(A) ∪ 𝑐𝜇(B).                                                                                                                                           

Theorem 3.2: Let X  be a 𝜇𝑇𝐷, 𝑐𝑜-space and let A and B be 𝜇 - open and 𝜇 - closed 

sets respectively . Then 𝑖𝜇(A∩B) = 𝑖𝜇({x}).                                                                                                                               

Proof: Let A⊂X be 𝜇 - open. Since X is 𝜇𝑇𝐷, there exists 𝜇 - closed set B in X such 

that A ∩ B = {x}. As X is a 𝑐𝑜-space, 𝑖𝜇(A∩B) = 𝑖𝜇(A) ∩ 𝑖𝜇(B) = 𝑖𝜇({x}).   ∎                                                                        

Definition 3.3: Let X be a SGT space and let A ⊂X. Then (i)  A is said to be a 𝜇𝑇2 - 

closed set relative to X iff every open cover 𝒜 of A has a finite subfamily 𝒜′ ⊂  𝒜 

such that A ⊂ ∪{ 𝑐𝜇(U)/U ⊂ 𝒜′ }.    (ii) A is said to be 𝜇𝑇2-closed set iff (A, 𝜇/A) is 

𝜇𝑇2 -closed.  

Example 3.2: Let (X, 𝜇) = (X,𝜏) be a SGT space with the indiscrete topology. Every 

subset of X  is  𝜇 -open and 𝜇 -dense in X. So for every open cover 𝒜 and U ∈ 𝒜, 

𝑐𝜇(U) = X and (X, 𝜇)  is  𝜇𝑇2 - closed.                                                                                                                                                 

Definition 3.4: A space X is said to be locally 𝜇𝑇2 -closed if for each x∈X and a 𝜇 -

open set U containing x, the 𝜇 -closure of U is 𝜇𝑇2 -closed.                                                                                      

Theorem 3.3: Let X be a SGT space.  Then (i) if A ⊂X is 𝜇𝑇2 -closed set relative to X, 
then A is   𝜇 -closed in X if X is 𝜇 -Hausdorff. (ii) if A ⊂X is 𝜇 - open set, A is 𝜇𝑇2 -

closed set relative to X iff A is 𝜇𝑇2 -closed set.                                                                                                                                          

Proof: (i) Let x∈X-A. Since X is a 𝜇 -Hausdorff space, there exists for each y∈A, 𝜇 -

open neighbourhoods  𝑈𝑦 and  𝑉𝑦 of x and y respectively such that 𝑈𝑦 ∩  𝑉𝑦 = 𝜙. Then 
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{𝑉𝑦 / y∈A} is a  𝜇 –open cover, hence a 𝜇 -open cover of A. Since A is 𝜇𝑇2 –closed, 

there exist a finite subset B⊂A such that A ⊂∪{𝑐𝜇(𝑉𝑦)/ y∈B}. Let U = {𝑈𝑦/y∈B}. 

Then U is a 𝜇 -open neighbourhood of x such that A ∩ U = 𝜙. Then 𝑐𝜇(A) = A and 

hence A is 𝜇 -closed.                                                                                        (ii) 

Assume A to be a 𝜇𝑇2 -closed set. Then (A, 𝜇/A ) is 𝜇𝑇2 –closed. Let {𝑈𝑦/y∈A} be a 

𝜇 -open cover of A with 𝑈𝑦 ∈ 𝜇 -open set of X for every y∈A.  Let  𝑉𝑦 = A ∩ 𝑈𝑦. Since 

A is 𝜇 -open,  𝑉𝑦 ∈ 𝜇 -open set of A. So {𝑉𝑦/y∈A} is a 𝜇 -open cover of A in A. 

Since(A, 𝜇/A) is 𝜇𝑇2 -closed, there exists a finite subset  B⊂A such that A ⊂

∪{𝑐𝜇(𝑉𝑦)/ y∈ B ⊂A } (or) A ⊂∪{ 𝜇 - 𝑐𝑙𝐴(𝑉𝑦)/ y∈ B ⊂A }. Now 𝜇 - 𝑐𝑙𝐴(𝑉𝑦) = 𝑐𝜇(𝑉𝑦) 

∩ A  ⊂ 𝑐𝜇(𝑉𝑦). So A ⊂∪{𝑐𝜇(𝑈𝑦)/ y∈ B ⊂A }. Thus A is 𝜇𝑇2 -closed set relative to X.  
Since A is 𝜇 –open, every 𝜇 –open subsets of A is 𝜇 - open in X, and hence the 

converse part of (ii) is obvious.  ∎                                                                                                                           

Definition 3.5: [10] A GTS (X, 𝜇) is 𝜇 -compact if every 𝜇 -open cover of X has a 

finite subcover. A subset A of X is said to be 𝜇 -compact relative to (X, 𝜇) if every 

cover of A by 𝜇 -open sets of X has a finite subcover.                                                                                                                                        

Definition 3.6:  A collection  𝒜 of subsets of a SGT space X is said to be a 𝜇 -

covering of X if the union of the elements of 𝒜 equal to X. It is called a 𝜇 -open 

covering of X if its elements are 𝜇 -open subsets of X.                                                                                                                                             

Definition 3.7:  A space X is said to be 𝜇 - compact if every 𝜇 - open covering 𝒜 of X 

contains a finite sub collection that also covers X.                                                                                                     

Example 3.3: The subspace X = {0} ∪ {
1

𝑛
  / n ∈ 𝑍+} of ℝ is 𝜇 -compact. Given a 𝜇 -

open covering 𝒜 of X, there is an element U of 𝒜 containing 0. The set U contains all 

but finitely many of the points 
1

𝑛
; choose, for each point of X not in U, an element of 

𝒜 containing it. The collection consisting of these elements of 𝒜, along with the 

element U, is a finite subcollection of 𝒜 that covers X. Let Y be a subspace of X. A 

collection 𝒜 of subsets of X is said to be a covering of Y if the union of it elements 

contains Y.                                                                                                                                                

Theorem 3.4: Let Y be a subspace of X. Then Y is 𝜇 -compact iff every covering of Y 

by 𝜇 -open sets in X contains a finite sub collection covering Y.                                                                                                                                

Proof: Suppose Y is 𝜇 -compact. Let 𝒜 = { 𝐴𝛼}𝛼∈𝐽 be a covering of Y by 𝜇 -open sets 

in X. Since Y is a subspace of X, { 𝐴𝛼 ∩ 𝑌 /𝛼 ∈ 𝐽} is 𝜇 -open in Y. Then the 

collection { 𝐴𝛼 ∩ 𝑌 /𝛼 ∈ 𝐽} is a covering of Y by 𝜇 -open sets in Y. Hence {𝐴𝛼1
, 

𝐴𝛼2
, ... , 𝐴𝛼𝑛

∩ 𝑌} covers Y. Then {𝐴𝛼1
, 𝐴𝛼2

, ... , 𝐴𝛼𝑛
} is a sub collection of 𝒜 that 

covers Y. Conversely, suppose that the given condition holds. Let 𝒜′ = {𝐴𝛼
′ } be a 

covering of Y by 𝜇 - open sets in X. By hypothesis, some finite sub collection{𝐴𝛼1
, 
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𝐴𝛼2
,..., 𝐴𝛼𝑛

} covers Y. Then {𝐴𝛼
′

1
, 𝐴𝛼

′
2
,...., 𝐴𝛼

′
𝑛

} is a subcollection of 𝒜′ that covers 

Y,and so Y is 𝜇 −compact.∎                                                                                                                                    

Theorem 3.5:  Every 𝜇 -closed subset of a 𝜇 -compact space is 𝜇 -compact.                                                    

Proof: Let F be a 𝜇 -closed subset of a  𝜇 -compact space K and let {𝑉𝛼} be a covering 

of F by sets     𝜇 -open in X. Let 𝐹𝑐 = W. Then W is 𝜇 –open (single 𝜇 -open set) from 

an 𝜇 -open covering of K by adjoining {𝑉𝛼} with 𝐹𝑐. Then W ∪ ( 𝑉𝛼𝛼
∪  ) covers K. This 

𝜇 -open cover of K contains a finite (sub cover) sub collection { 𝑉𝛼𝑖
} such that K ⊂ W 

∪ 𝑉𝛼1
∪ 𝑉𝛼2

 ∪ ..... ∪ 𝑉𝛼𝑛
. Suppose this sub collection contains the set W,then discard 

W. If this sub collection does not contain the set W, then leave the sub collection 

above. The resulting collection is a finite sub collection of F. Then F ⊂ 𝑉𝛼1
∪ .... ∪ 

𝑉𝛼𝑛
.  ∎        

Theorem 3.6: Suppose X is a  𝜇 -Hausdorff space, K⊂X, K is 𝜇 –compact, and p ∈

𝐹𝑐. Then there are 𝜇 –open sets U and W such that p ∈ U, K⊂W and U ∩ W = 𝜙.    

Proof: Given X  is a 𝜇 -Hausdorff space, K⊂X is 𝜇 -compact and q ∈ K. Since X is  𝜇 

-Hausdorff and K⊂X, we have, there exist disjoint 𝜇 -open sets 𝑈𝑞 and  𝑉𝑞 such that 

p ∈ 𝑈𝑞and q ∈ 𝑉𝑞.   Since K is 𝜇 -compact , the collection {𝑉𝑞/𝑞 ∈ K} is a covering of 

K. Then there are points 𝑞1, 𝑞2,...., 𝑞𝑛 ∈ K, there exist finite sub collection 𝑉𝑞1
∪

 𝑉𝑞2
∪ ...   ∪ 𝑉𝑞𝑛

 such that K ⊂ 𝑉𝑞1
∪ 𝑉𝑞2

∪ ...   ∪ 𝑉𝑞𝑛
. Then the 𝜇 –open set W = 

𝑉𝑞1
∪ 𝑉𝑞2

∪ ...   ∪ 𝑉𝑞𝑛
contains K and it is disjoint from the 𝜇 –open set U = 𝑈𝑞1

∪

 𝑈𝑞2
∪ ...   ∪ 𝑈𝑞𝑛

 formed by taking the intersection of the corresponding 𝜇 –open sets 

of p. Therefore U is a 𝜇 –open set of p, K⊂W and U ∩ W = 𝜙.  ∎                                    

Corollary 3.7: (a) 𝜇 –compact subset of a 𝜇 –Hausdorff spaces are 𝜇 -closed. (b) If F 

is 𝜇 -closed and K is 𝜇 -compact in a 𝜇 - Hausdorff space, then, F∩K is 𝜇 -compact.                                                                                                      

Proof: (b) follows from (a) and Theorem 3.5 ∎                                                                                               

Theorem 3.8: The image of a 𝜇 -compact space under a 𝜇 -continuous map is 𝜇 –

compact.                                                               Proof: Let X be 𝜇 -compact. and let  f 
: X→Y  be 𝜇 – continuous. Let 𝒜 be a covering of the set  f(x) by 𝜇 -open sets in Y. 

The collection { f -1(A)∕A∈ 𝒜} is a collection off sets covering X. These sets are 𝜇-

open in X because f is 𝜇 -continuous. Hence finitely many of them f -1(𝐴1),... , f -
1(𝐴𝑛),(say) cover X. Then the sets  𝐴1, ... , 𝐴𝑛 cover f(x). This implies that f(x) is 𝜇 –

compact.  ∎                                       

Theorem 3.9: Let f :  X→Y be a bijective 𝜇 -continuous function. If X is 𝜇 -compact 

and Y is 𝜇 – Hausdorff then f  is a homeomorphism.                                                                                                   
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Proof: The 𝜇 -continuity of the map f -1 follows if the images of 𝜇 -closed sets of X 

under f   are  𝜇 - closed in Y. Suppose that A is 𝜇 -closed in X. Then by Theorem 3.5, A 

is 𝜇 -compact. Thus, by    Theorem 3.8, f(A) is compact. Since 𝜇 -compact subset of a 

𝜇 -Hausdorff space is 𝜇 -closed, we have f(A) is 𝜇 - closed in Y.  ∎                                                                                                                         

Remark: If X and Y are GTS and f :  X→Y, we call f an 𝜇 -open (𝜇 -closed) set A in X, 

f(A) is 𝜇 -open iff f is 𝜇 -closed iff f -1 is continuous. Thus a 1-1 onto map f is a 

homeomorphism iff it is  𝜇 -continuous and 𝜇 -open iff it is 𝜇 -continuous and 𝜇 -

closed. If (X, 𝜇) is a GTS, then we say that a subset A ∈ 𝛿 ⊂ 𝜌(X) is a 𝛿-set[4] iffor 

every x ∈A, there exists a 𝜇 -closed set 𝒜 such that x ∈ 𝑖𝜇(𝒜) ⊂A. Then (X, 𝛿) is a 

GTS, [[4] proposition 2.1] suchthat 𝛿 ⊂ 𝜇 [4] Theorem1] Elements of 𝛿 are called 𝛿-

open sets of (X, 𝜇),For A⊂ 𝑋, 𝑖𝛿(A) and 𝑐𝛿(A) are respectively the interior and closure 

of A in (X, 𝛿). The family of all 𝛼-open (resp. semi open, pre open, b-open, 𝛽-open) 

sets of the generalized topological spaces (X, 𝛿) denoted by 𝛾(resp. 𝜉, 𝜂, 𝜀, 𝜓).        

Definition 3.8: [8] Let (X, 𝜇) be a generalized space. A subset A of X is said to be 𝑔𝜇 -

closed if 𝑐𝜇(A) ⊂M whenever A ⊂ M and M ∈ 𝜇.                                                                                                 

Various properties of 𝑔𝜇 –closed sets are discussed and characterizations are given 

in[2] and these properties are valid for the generalized topologies induced by 𝜇 and 𝛿. 

Given a topological space (X,𝜏) and a generalized topology 𝜇 on X, a subset A of X is 

said to be g𝜇 -closed if 𝑐𝜇(A) ⊂M whenever A⊂M and M ∈ 𝜏. If 𝜇 = 𝜏, then g 𝜇 -

closed sets coincide with the g –closed sets of  Levine[7]  [ie, A ⊂X is g –closed if 

cl(A) ⊂U whenever A ⊂U and U is open in X].                                                                 

The difference between the two definitions 𝑔𝜇 –closed set and g𝜇 –closed set is that 

the definition of g𝜇 –closed sets uses elements of the topology 𝜏 on X where X ∈ 𝜏 

where as the definition of 𝑔𝜇 –closed sets uses elements of the generalized topology 𝜇 

where X may or may not be in 𝜇. Therefore, the definition of 𝑔𝜇 –closed sets is more 

general, since the definition uses a large class of generalized topologies which also 

contains the class of all topological spaces. Moreover, similar results established for 

g𝜇 –closed sets are already established for 𝑔𝜇 –closed sets in [5].                                                

The following definition is the definition for generalized closed sets in generalized 

spaces.                 

Definition 3.9:  A subset A of 𝑀𝜇  = ∪{B∕B ∈ 𝜇 } of a generalized spaces (X, 𝜇) is 

said to be   𝑔𝜇
∗  - closed if 𝑐𝜇(A)∩ 𝑀𝜇  ⊂M whenever A⊂M and M ∈ 𝜇.                                                                                     

Note that, if the space is strong, then this definition coincides with the definition of 𝑔𝜇 

–closed sets.   The above definition is the common definition of generalized closed 

sets in generalized spaces for both strong and non strong spaces.                                                                                                                    
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Note that 𝑀𝜇 = ∪{𝐴 ∕ 𝐴 ∈ 𝜇 } and X  𝜇.                                                                                                      

Examples: Let (X, 𝜇) be a GT. Suppose 𝑀𝜇 = ∪{𝐴 ∕ 𝐴 ∈ 𝜇 } ≠ X and 𝜏 =  𝜌(𝑀𝜇) ∪ 

{X}. Then every 𝜇 −closed subset of X contains X- 𝑀𝜇. Therefore, every subset A of 

𝑀𝜇 is neither a 𝑔𝜇 –closed set nor a g𝜇 –closed set. Also 𝑔𝜇
∗   – closed sets depend on 

the generalized topology 𝜇. Every non-empty subset B of X such that B ∩ (X-𝑀𝜇) ≠

 𝜙 or B ⊂(X-𝑀𝜇) is not contained in any 𝜇 −open set which implies that such sets are 

trivially 𝑔𝜇 –closed set. Clearly, such sets are g𝜇 –closed set , since X is the only open 

set containing such sets.                                                                                                     

Definition[3]: Let (X, 𝜏) be a topological spaces and 𝜇 be a generalized topology on 

X. (X, 𝜏) is said to be a 𝜇g –regular spaces if for each closed set F and a point x ∉ F, 

there exist disjoint 𝜇 -open sets U and V such that x ∈U, F⊂V.                                                                                                                    

Example 3.4: Let X = {a,b,c} and let  𝜇 = {𝜙, {a},{b},{a,b}} be the family of all 

generalized open sets, which is not strong. Consider the set {a} and {b}. Then 𝑐𝜇({a}) 

= {a,c} and 𝑐𝜇({b}) = {b,c}. It is easy to show that 𝜇 is not 𝜇𝑔 −regular.                                                                                                         

Example 3.5: Let X = 𝐼𝑛 = {1,2,...,n}.},  Define K : 𝜌(𝐼𝑛) ⟶ 𝜌(𝐼𝑛) by                                                                

K(A) =   {𝐴 𝑖𝑓 𝐼𝑛 −  {i} ⊆ A for some i ∈ 𝐼
𝜙    ,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

,                                                                                                   

then 𝜇 = { 𝜙,X} ∪ {A ⊂ 𝐼𝑛 –{i}, i =1,2,...,n}, the co singleton generalized topology 

defined on a finite set. The only 𝜇 – closed sets are 𝜙,X and singleton subsets of 𝐼𝑛. In 

this space, the family of all              𝑔𝜇 –closed sets and the family of all 𝜇 - closed 

sets coincide. For the topology 𝜏 = {𝜙} ∪ {G⊂ 𝑋 / {1,2} ⊂ G} on X, the 𝜇 -closed 

sets are precisely the  g𝜇 –closed sets. This space (X, 𝜏) with the family of all 

generalized open sets 𝜇 which is strong, is also not 𝜇g – regular.                                           

Example 3.6: Consider the space (X, 𝜏) and generalized topology 𝜇 of the Example 

2.3 of [9]. In this space, {a,c} is g𝜇 – closed but it is not 𝑔𝜇
∗   – closed and also not 𝑔𝜇 

– closed. If (X, 𝜇) is any generalized spaces which is not strong, then in [6, 

proposition 1.2], it is established that X∈ 𝜎 and so it follows that always X ∈ b.And X 
∈ 𝛽. The following example shows that in general, X ∉ 𝜇, then X ∉ 𝜆 for 𝜆 ∈ { 𝜇, 

𝛿, 𝛼, 𝜋, 𝛾, 𝜂}.                                                                                                                         

Example 3.7: Let X be the set of all real numbers and 𝜇 = { 𝜙, {0}}. Then X ∉ 𝜆  

where 𝜆 ∈ { 𝜇, 𝛿, 𝛼, 𝜋, 𝛾, 𝜂}.                                                                                                                                                  

Lemma 3.10:  Let (X, 𝜇) be a GTS which is not strong. Then the following hold.                                                                                   

(i) X ∉ 𝜋 and hence X ∉ 𝛼,                                                                                                                                   

(ii) X ∉ 𝛿 and hence X ∉ 𝜂.                                                                                                                                                                    

Note that, if 𝜇 is a generalized topology on X, and let 𝑀𝜇 = ∪{A∕ 𝐴 ∈ 𝜇}. X ∉ 𝜇  and 
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𝜆 belongs to the family of all 𝜇 - open sets 𝜇, or the family of all 𝛼 - open sets 𝛼, or 

the family of all Semi open sets 𝜎 or the family of all pre open sets 𝜋 or the family of 

all b - open sets b or the family of all 𝛽 - open sets 𝛽. Then by the Lemma 3.10, we 

have 𝑀𝜆  ≠ X if 𝜆 ∈ { 𝜇, 𝛼 , 𝜋, 𝛿} and 𝑀𝜆  = X if 𝜆 ∈ {𝜎, 𝑏, 𝛽, 𝜀, 𝜉, 𝜓} Moreover, 𝑀𝜆  = 

𝑀𝜇 if 𝑀𝜆  ≠ X.                                                                                                          

Definition 3.10: Let X be a non-empty set and let 𝜇 be a generalized topology on X. 

The space (X, 𝜇) is said to be 𝑔𝜇 –regular if for each pair consisting of a point x ∈ 𝑀𝜆  

and a 𝑔𝜇
∗   – closed set F not containing x, there exist disjoint 𝜇 - open sets U and V 

such that x ∈U and F ⊂ V.    

Remark: Every  𝑔𝜇 –regular space is a 𝜇 -regular space. 
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