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Abstract 

Here we give approximation of an alternating series using remainder term of 

the series. Here we introduce a new term called correction term. The 

correction term plays a vital role in series approximation.  
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INTRODUCTION 

The illusturious mathematician Madhava of 14th century introduces correction 

function for the series for  pi. The  Madhava series is  

C   =    
4𝑑
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−.....................+(−1)𝑛−1 4𝑑

2𝑛−1
+ (−1)𝑛 4𝑑(2𝑛)/2

(2𝑛)2+1
  ,  where C is the 

circumference   of  a  circle  of  diameter  d. 

Here the remainder term is (-1)n 4d Gn    where    Gn  =
(2𝑛)/2

   (2𝑛)2+1
    is the correction 

term. The introduction of the correction term improves  the value of C and gives a 

better approximation for it. 
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RATIONAL APPROXIMATION OF  ALTERNATING SERIES ∑
(−1)𝑛−1

𝑎𝑛2+𝑏𝑛+𝑐
∞
𝑛=1   

where  a,b,c ∈ R  with     a≠0   and   √𝑏2 − 4𝑎𝑐  ≠ 2a. 

The alternating series      ∑
(−1)𝑛−1

𝑎𝑛2+𝑏𝑛+𝑐
∞
𝑛=1     satisfies the conditions of alternating series 

test and so it is convergent. 

 

Theorem 

The correction function for the alternating series  ∑
(−1)𝑛−1

𝑎𝑛2+𝑏𝑛+𝑐
∞
𝑛=1  where a,b,c ∈ R with 

a≠ 0     is       Gn  =  
1

{2𝑎𝑛2+(2𝑏+2𝑎)𝑛+(2𝑐+𝑏+2𝑎)}
  

Proof 

If   Gn   is  the  correction function   after   n   terms of the series ,then  

we have Gn  +  Gn+1  =  
1

𝑎𝑛2+(2𝑎+𝑏)𝑛+𝑎+𝑏+𝑐
        

The error function is      En  =  Gn  + Gn+1 −      
1

𝑎𝑛2+(2𝑎+𝑏)𝑛+𝑎+𝑏+𝑐
        

Let  Gn (𝑟1 , 𝑟2)   =  
1

{2𝑎𝑛2+(4𝑎+2𝑏)𝑛+(2𝑎+2𝑏+2𝑐)}−(𝑟1 𝑛+𝑟2)
   where   𝑟1 , 𝑟2 ∈ R   and   

n   is fixed. 

Then error function |𝐸𝑛(𝑟1, 𝑟2)| is  minimum   for r1  = 2a  , r2 = b 

Hence for  r1  = 2a  , r2 = b ,  both  Gn  and  En  are functions of a single variable n. 

Thus the  correction  function for the  series       ∑
(−1)𝑛−1

𝑎𝑛2+𝑏𝑛+𝑐
∞
𝑛=1     is   

                      Gn    =       
1

{2𝑎𝑛2+(2𝑏+2𝑎)𝑛+(2𝑐+𝑏+2𝑎)}
 

 

The  corresponding error function   is  

|En |  = 
|(𝑏2−4𝑎𝑐)−4𝑎2|

{2𝑎𝑛2+(2𝑏+2𝑎)𝑛+(2𝑐+𝑏+2𝑎)}{(2𝑎𝑛2+(2𝑏+6𝑎)𝑛+(6𝑎+3𝑏+2𝑐)}{(𝑎𝑛2+(2𝑎+𝑏)𝑛+(𝑎+𝑏+𝑐)}
  

Hence the proof. 
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REMARK 

Clearly   Gn  is less than the absolute value of the (n+1)th term. 

 

APPLICATION 

1.   The series   ∑
(−𝟏)𝒏−𝟏

𝒏𝟐
∞
𝒏=𝟏    = ᶯ(𝟐) 

We  have   ᶯ(2) = 0.8224670334, using a calculator. 

The  correction function for the  series is  Gn  =  
1

2𝑛2+2𝑛+2
 

For  n= 10 ,  the series approximation after applying correction function  is given 

below 

Number of terms Sn Sn  +  (−1)𝑛  Gn 

10 0.8179621756 0.82246666801 

 

2.  THE ALTERNATING SERIES    ∑
(−1)𝑛−1

𝑛(𝑛+1)
∞
𝑛=1  

The alternating series  ∑
(−1)𝑛−1

𝑛(𝑛+1)
∞
𝑛=1   is convergent and converges to 2log2-1. 

We have  2log2-1 = 0.3862943611, using a calculator. 

The correction function for the series is   Gn  =   
1

2(𝑛+1)2+12 

For  n= 10 ,  the series approximation after applying correction function  is given 

below 

Number of terms Sn Sn  +  (−1)𝑛  Gn 

10 0.3821789321 0.3863283098 

 

CONCLUSION 

The introduction of correction function improves the sum of the series and gives a   

better approximation. 
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