Strong λ - Bi Near Subtraction Semigroups

S.Firthous Fatima⁽¹⁾ and S. Jayalakshmi⁽²⁾

¹Department of Mathematics, Sadakathullah Appa College (Autonomous), Thirunelveli- 627 011, Tamil Nadu,India.

² Department of Mathematics, Sri ParaSakathi College (Autonomous) for women, Courtallam, Tamil Nadu, India.

Abstract

In this paper we introduce the notion of Strong λ - bi-near subtraction semigroup. Also we give characterizations of Strong λ - bi-near subtraction semigroup.

Mathematical subject classification: 06F35

Key words: Strong λ bi-near subtraction semigroup, S₁- bi-near subtraction semigroup, S₂- bi-near subtraction semigroup, Nil near subtraction semigroup.

1. INTRODUCTION

In 2007, Dheena[1] introduced Near Subtraction Algebra, Throughout his paper by a Near Subtraction Algebra, we mean a Right Near Subtraction Algebra. For basic definition one may refer to Pillz[4]. Zekiye Ciloglu, Yilmaz Ceven [5] gave the notation of Fuzzy Near Subtraction semigroups. Seydali Fathima et.al[2,3] introduced the notation of S_1 -near subtraction semigroup and S_2 -near subtraction semigroup. In this

paper we shall obtained equivalent conditions for regularity in terms of Strong λ - Bi near subtraction semigroup .

2. PRELIMINARIES

A non-empty subset X together with two binary operations "–" and "." is said to be subtraction semigroup If (i) (X,–) is a subtraction algebra (ii) (X, .) is a semi group (iii) x(y-z)=xy-xz and (x-y)z=xz-yz for every x, y, $z \in X$. A non-empty subset X together with two binary operations "–" and "." is said to be near subtraction semigroup if (i) (X,–) is a subtraction algebra (ii) (X,.) is a semi group and (iii) (x-y)z=xz-yz for every x, y, $z \in X$. A non-empty subset X is said to be **S**₁-near subtraction semigroup if for every $a \in X$ there exists $x \in X^*$ such that axa=xa. A non-empty subset X is said to be **S**₂-near subtraction semigroup if for every $a \in X$ there exists $x \in X^*$ such that axa=ax. A non-empty subset X is said to be **nil-near subtraction semigroup** if there exists a positive integer k>1 such that $a^k=0$ Which implies that xa=0 where $x=a^{k-1}$.

3. STRONG λ -BI NEAR SUBTRACTION SEMIGROUP

Definition 3.1

A non-empty subset X together with two binary operations "-" and "." Is said to be **Strong** λ - **bi near subtraction semigroup**. Then X is the both strong S₁ and strong S₂-near subtraction semigroup

Example 3.2

Let $X = \{0,a,b,1\}$ in which "-" and "." be defined by

-	0	a	b	с
0	0	0	0	0
a	a	0	с	b
b	b	0	0	0
c	с	0	с	0

	0	a	b	с
0	0	0	0	0
a	0	a	a	a
b	0	0	b	b
c	0	a	b	с

Then X is a Strong λ - bi near-subtraction semi group

Result 3.3

Every Strong λ -bi near Subtraction Semigroup is a λ - bi near Subtraction Semigroup

Proof:

Let X be a Strong λ -bi near Subtraction Semigroup where X is the both Strong S₁ and Strong S₂ near subtraction semigroup \Rightarrow For a,b \in X, aba=ba and aba=ab \Rightarrow For a \in X, aba=ba and aba=ab for some b \in X. Therefore X is both S₁ and S₂ near subtractionsemigroup. Thus X is a λ - bi near Subtraction Semigroup.

Remark 3.4

The converse of the above result need not be true shown by a following example.

-	0	a	b	1
0	0	0	0	0
a	a	0	а	a
b	b	b	0	b
1	1	1	1	0

Let $X = \{0,a,b,c\}$ in which "-" and "." be defined by

Thus X is an λ - bi near-subtraction semi group but not Strong λ - bi-near subtraction semi group

Hence, every λ - bi-near subtraction semi group need not be a Strong λ - bi-near subtraction semi group.

Theorem 3.5

Let X be a Boolean near subtraction semigroup. Each of the following statement implies that X is a Strong λ -bi near Subtraction Semigroup

- 1. X is commutative.
- 2. X is of Type I and Type II.
- 3. aXa=Xa and aX=aXa for all $a \in X$ (That is, X is P'_1 and P_1 near subtraction semigroup).
- 4. X is sub commutative.

Proof:

Let X be a Boolean near subtraction semigroup

Let X be a commutative near subtraction semigroup.and let $a,b \in X$. Now, aba = a(ba) = a(ab) (Since X be a commutative) $=a^2b =ab$ (Since X be a Boolean)=ba (Since X be a commutative) and let $a,b \in X$. Now, aba = (ab)a = (ba)a (Since X be a commutative) $=ba^2 = ba$ (Since X be a Boolean) = ab (Since X be a commutative). Thus X is a Strong λ -bi near subtraction semigroup.

Let X be of Type I and Type II near subtraction semigroup and let $a,b \in X$. Then $aba=baa=ba^2=ba$ [Since X is Boolean] and $aba=aab=a^2b=ab$ [Since X is Boolean]. That is, aba=ba and aba=ab. Thus X is a F^{*}-bi near subtraction semigroup.

Let $a \in X$. Since Xa=aXa and aX=aXa, for every $b \in X$ there exists $y \in X$ such that ba=aya and ab=aya. Now $aba=a(ba)=a(aya)=a^2ya=aya$ [Since X is Boolean]=ba and $aba=(ab)a=(aya)a=aya^2=aya$ [Since X is Boolean]=ab. Thus X is a Strong λ -bi near subtraction semigroup.

Let X be a Sub-commutative Let $a \in X$, aX=Xa. Therefore for every $b \in X_1$ there exists $c \in X_1$ such that ba=ac and ab=ca. Now, $aba \ a(ba) = a(ac) = ac^2 = ac(Since X be a Boolean) = ba$ and $aba=(ab)a = (ca)a = ca^2 = ca(Since X be a Boolean) = ab$. Thus X is a Strong λ -bi near Subtraction

Theorem 3.6

Any homomorphic image of a Strong λ -bi near Subtraction Semigroup is a Strong λ -bi near Subtraction Semigroup.

Proof:

Let $f: X \to Y$ be a homomorphism. Since X be a Strong λ --bi near subtraction semigroup \Rightarrow aba =ba and aba = ab for all $a, b \in X$. Let $y_1, y_2 \in Y$ then there exists $x_1, x_2 \in Y$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Clearly then $x_1y_1x_1 = y_1x_1$ and $x_1y_1x_1 = x_1y_1$. And the desired result now follows.

4. RESULTS ON STRONG λ -BI NEAR SUBTRACTION SEMIGROUP. Proposition 4.1

If X is a Strong λ -bi near subtraction semigroup then $E \subset C(X)$.

Proof

For $e \in E$, eX = Xe [Since X is Sub-commutative] = $Xe^2[X \text{ is left bipotent}]$. for $e \in E$, eX = Xe [Since X is Sub-commutative] $\Rightarrow eeX = eXe \Rightarrow e^2X = eXe \Rightarrow eX = eXe$ [since $e^2=e$].

Again Xe=eX \Rightarrow Xee=eXe \Rightarrow Xe²=eXe \Rightarrow Xe=eXe[since e²=e].Clearly, Then for every $x \in X$, there exists u and v in y such that ex=eue and xe=eveexe=euee=eue²=eue=ex and exe=eeve= e²ve=eve=xe. Thus ex=exe=xe for all $x \in X$. Consequently $E \subset C(X)$.

Theorem 4.2

Let X be a left self distributive S-near subtraction semigroup Then X is a Strong λ -bi near subtraction semigroup if and only if X is a GNF.

Proof

Assume that X is a GNF. Now for $a \in X$, Since X is a S-bi near subtraction semigroup.Let $a \in ax = axa$. Thus X is a regular... Let $a, b \in X$. Then a = aba [Since X is regular] =abaa[Since X is self distributive] = aa [Since X is regular] = a^2 . Therefore, X is Boolean and regular implies that X is Strong λ -bi near subtraction semigroup Conversely, assume that X is a Strong λ -bi near subtraction semigroup. Since X is a S-bi near subtraction semigroup.Let $a \in ax = axa$. Thus X is a regular. Again by Proposition 4.1, $E \subseteq C(x)$. Therefore X is GNF.

Theorem 4.3

Let X be a S-near subtraction semigroup Then X is a Strong λ -bi near subtraction semigroup if and only if for every $x \in X$ there exists a unique central idempotent e such that Xx = Xe and X is regular.

Proof

For the only if part let $x \in X$. Since X is a Strong λ -bi near subtraction semigroup and from by previous Theorem, X is a GNF. Therefore X is regular and $E \subset C(x)$. Let $a, x \in X$. Since X is regular, x = xax, Now Xx = Xax = Xe, Where $e = ax \in E$. Since $E \in C(x)$, the idempotent e is central and Xx = Xe, for all $x \in X$. Let $e_1 \in E$ and $Xe_1 = Xx$, for some central idempotent e_1 . Now $e_1 = e_1^2 \in Xe_1 = Xx = Xe$ and so $e_1 = ne$, for some $n \in X$. Consequently, $e_1 = ne = ne^2 = (ne)e = e_1e$ and $e = e^2 \in Xe = X e_1$ and so $e = ue_1$, for some $u \in X$. This implies that $e = ue_1 = ue_1^2 = (ue_1)e_1 = ee_1$. Since e is a central idempotent, $ee_1 = e_1e$ and so $e = e_1$. Thus e is the unique central idempotent.

Conversely, since X is regular and idempotent central, X is a GNF. Therefore by Previous Theorem, X is a Strong λ -bi near subtraction semigroup.

REFERENCES

- [1] P. Dheena and G. Sathesh kumar *On Strongly Regular Near- Subtraction semi groups*, Commun. Korean Math. Soc.22 (2007), No.3, pp.323-330.
- [2] S. Seyadali Fathima and R.Balakrishnan, S₁-near subtraction semigroups, Ultra Scientist Vol.24(2012), (3)A,578-584.
- [3] S. Seyadali Fathima and R.Balakrishnan, S₂-near subtraction semigroups, Research Journal of Pure Algebra-2(2012), (12)A,382-386.
- [4] Pilz Gunter, *Near-Rings*, North Holland, Amsterdam, 1983
- [5] Zekiye Ciloglu, Yilmaz Ceven, *On Fuzzy Near Subtraction semigroups*, SDU Journal of Science (E-Journal), 2014, 9(1):193-202.