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Abstract

A graph is said to be cordial if it has a 0-1 labeling that satisfies certain properties.
In this paper we show that transformation graphs of cycle are cordial. We also show
that total graph of sunlet graph, comb and star are cordial.
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1. Introduction

All graphs G considered here are finite, undirected and simple. We refer to [1] for
unexplained terminology and notations. In 2001, Wu and Meng [3] introduced some
new graphical transformations which generalizes the concept of the total graph. As is
the case with the total graph, these generalizations referred to as transformation graphs
Gxyz have V (G) ∪ E(G) as the vertex set. The adjacency of two of its vertices is
determined by adjacency and incidence nature of the corresponding elements in G.

Let α, β be two elements of V (G) ∪ E(G). Then associativity of α and β is taken
as + if they are adjacent or incident in G, otherwise −. Let xyz be a 3-permutation of
the set {+, −}. The pair α and β is said to correspond to x or y or z of xyz if α and
β are both in V (G) or both are in E(G), or one is in V (G) and the other is in E(G)

respectively. Thus the transformation graph Gxyz of G is the graph whose vertex set is
V (G) ∪ E(G). Two of its vertices α and β are adjacent if and only if their associativity
in G is consistent with the corresponding element of xyz.

In particular the transformation graph G++− of G is the graph with vertex set V (G)∪
E(G) in which the vertices u and v are joined by an edge if one of the following holds
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1. both u, v ∈ V (G) and u and v are adjacent in G

2. both u, v ∈ E(G) and u and v are adjacent in G

3. one is in V (G) and the other is in E(G) and they are not incident with each other
in G.

The transformation graphs are investigated in [4], [5] and [6].
A graph labeling is an assignment of integers to the vertices or edges, or both,

subject to certain conditions. A mapping f : V (G) → {0, 1} is called a binary labeling
of the graph G. For each v ∈ V (G), f (v) is called the vertex label of the vertex v

under f and for an edge uv the induced edge labeling g : E(G) → {0, 1} is given by
g(uv) = |f (u) − f (v)|. Then f is called a cordial labeling of G if the number of
vertices labeled 0 and the number of vertices labeled 1 differs by at most 1, and, the
number of edges labeled 0 and the number of edges labeled 1 differs by at most 1. A
graph G is cordial if it admits a cordial labeling. This concept is introduced by Cahit
[2]. For more cordial graphs we refer to [8], [9], [10], [12] and [11].

For convenience, the transformation graph Gxyz is partitioned into Gxyz = Sx(G) ∪
Sy(G)∪Sz(G) where Sx(G), Sy(G) and Sz(G) are the edge-induced subgraphs of Gxyz.
The edge set of each of which is respectively determined by x, y and z of the permutation
xyz. Sx(G) ∼= G when x is + and Sx(G) ∼= G when x is −. Sy(G) ∼= L(G) when y is
+ and Sy(G) ∼= L(G) when y is −. When z is +, α, β ∈ V (Gxyz) are adjacent in Sz(G)

if they are incident with each other in G. When z is −, α, β are adjacent in Sz(G) if they
are not incident in G.

The following notations are used in relation to labeling of Gxyz:
Let V0 and V1 denote the set of vertices of Gxyz labeled 0 and 1.
E0 and E1 denote set of edges of Gxyz labeled 0 and 1 respectively.
E0(Sx) and E1(Sx) denote set of edges labeled 0 and 1 in Sx(G). Similar meanings

are associates with E0(Sy), E1(Sy), E0(Sz) and E1(Sz) .
For P xyz

n xyz ∈ {+ + −, + − −, − + +, − + −, − − +, − − −, + + +} we
define a vertex labeling f : V (P xyz

n ) → {0, 1} and specify the induced edge labeling
g : E(P xyz

n ) → {0, 1} then show that f is a cordial labeling.

2. Cordiality of Transformation Graphs of Cycle

Let Cn : v1 − v2 − v3 − . . . − vn(n ≥ 3) be the cycle on n vertices and ei = vivi+1(1 ≤
i ≤ n − 1) and en = vnv1 be the edges of Cn.

Theorem 2.1. For any positive integer n ≥ 3

(a) C++−
n is cordial

(b) C+++
n is cordial

(c) C−++
n is cordial when n ≡ 0, 2, 3, 5, 6, 7(mod 8)
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(d) C+−−
n is cordial when n ≡ 0, 1, 2, 3, 5, 6(mod 8)

(e) C+−+
n is cordial when n ≡ 0, 2, 3, 5, 6, 7(mod 8)

(f) C−−−
n is Cordial when n ≡ 0, 1, 3, 4, 5, 7(mod 8)

(g) C−+−
n is Cordial when n ≡ 0, 1, 2, 3, 5, 6(mod 8)

(h) C−−+
n is Cordial when n ≡ 0, 1(mod 4).

Proof.

(a) For n ≥ 3 the vertices of C−+−
n are labeled as in table 1:
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Table 1: Cordial labeling of C++−
n .

|E0| and |E1| are calculated from the labeling of the vertices of V (C++−
n ), and are

given in the table 2:
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Table 2: |E0| and |E1| of C++−
n .

Therefore C++−
n is cordial.

(b) The vertices of C+++
n are labeled as below:

f (vi) = 1 for 1 ≤ i ≤ n

f (ei) = 1 for 1 ≤ i ≤ n
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Here |V0| − |V1| = 0
|E0| and |E1| are calculated from the labeling of the vertices of C+++

n , and are:

|E0| = |E0(Sx)| + |E0(Sy)| + |E0(Sz)| = n + n + 0 = 2n

|E1| = |E1(Sx)| + |E1(Sy)| + |E1(Sz)| = 0 + 0 + 2n = 2n

Therefore |E0| − |E1| = 0.

Therefore C+++
n is cordial.

(c) When 3 ≤ n ≤ 7, the vertices of C−++
n are labeled as in Table 3 which admits

cordial labeling.

n f (v1)f (v2)...f (vn) f (e1)f (e2)...f (en)

3 101 100
4 1010 1100
5 10101 11000
6 101010 110010
7 1010101 1100100

Table 3: Cordial labeling of C−++
n for the case n < 7.

when n ≥ 8, the vertex labeling of C−++
n are given in Table 4 and |E0| and |E1|

of C−++
n are counted in Table 5.

n )( ivf )( ief 10 ~ VV

rn 8=

28 += rn 1 







≤≡≤+

≤≡≤

otherwise

nir

ri

1
)2(mod0240

4)4(mod3,030

0 
38 += rn

58 += rn
78 += rn

�

0 










=

−≤≡≤+

+≤≡≤

otherwise

ni

nir

ri

1
0

1)2(mod0640

44)4(mod3,030

�

68 += rn
1 








≤≡≤+

+≤≡≤

otherwise

nir

ri

1
)2(mod0640

44)4(mod3,030

Table 4: cordial labeling of C−++
n for the case n ≥ 8.

Therefore C−++
n is cordial.

(d) For n = 3, 5and6, the vertices of C+−−
n are labeled as in Table 6 which admits

cordial labeling.

For n ≥ 8, the vertices of C+−−
n are labeled as in Table 7. In all the cases

|V0| − |V1| = 0.
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Table 5: |E0| and |E1| of C−++
n .

n f (v1)f (v2)...f (vn) f (e1)f (e2)...f (en)

3 110 001
5 11000 10101
6 110010 101010

Table 6: Cordial labeling of C+−−
n for the case n < 8.

|E0| and |E1| of C+−−
n for the case n ≥ 8 are given Table 8.

From the Table 8 it is evident that C+−−
n .

(e) For 3 ≤ n ≤ 8, the vertices of C+−+
n are labeled as in Table 9 which admits cordial

labeling.

For n ≥ 8, f is defined as in (d) which admits cordial labeling.

(f) For n = 3, 4, 5, 7, the vertices of C−−−
n are labeled as in Table 10 which admits

cordial labeling.

For n ≥ 8, the vertices of C−−−
n are labeled as in Table 11 and |E0| and |E1| of

C−−−
n for the case n ≥ 8 are given in Table 12.

Therefore C−−−
n is cordial.

(g) For 3 ≤ n ≤ 8, the vertices of C−+−
n are labeled as in Table 13 which admits cordial

labeling.

For n ≥ 8, the vertices of C−+−
n labeled as in Table 14 and |E0| and |E1| of C−+−

n

for the case n ≥ 8 are given table 15:

Therefore C−+−
n is cordial.
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Table 7: Cordial labeling of C+−−
n for the case n ≥ 8.
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Table 8: |E0| and |E1| of C+−−
n for the case n ≥ 8

(h) Vertices of V (C−−+
n ) are as in Table 16 and |E0| and |E1| of C−−+

n for the case
n ≥ 8 are given table 17:

�

3. Cordiality of G+++ when G isomorphic to Sunlet,
Comb and Star Graphs

We recall the following definitions:

Definition 3.1. Corona G1 �G2 of G1 and G2 is the graph obtained by taking one copy
of G1(which has n1 vertices) and n1 copies of G2 and then joining ith vertex of G1 to
every vertex in the ith copy of G2. So the order G1 � G2 is n1 + n1n2 where n2 is the
order of G2 and its size is m1 + n1n2 + n1m2 where mi is the size of Gi , ∀ i = 1, 2.
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n f (v1)f (v2) · · · f (vn) f (e1)f (e2) · · · f (en)

3 001 011
4 1101 1000
5 11001 01010
6 110010 010101
7 1100101 0101010

Table 9: Cordial labeling ofC+−+
n for the case 3 ≤ n ≤ 8.

n f (v1)f (v2) · · · f (vn) f (e1)f (e2) · · · f (en)

3 010 110
4 0101 1100
5 01010 11001
7 0101010 1100101

Table 10: Cordial labeling ofC−−−
n for the case n < 8.

Definition 3.2. Pn � K1 (n ≥ 3) is called comb graph of order 2n.
Definition 3.3. Cn � K1 (n ≥ 3) is called sunlet graph of order 2n.

Theorem 3.4. For any positive integer n ≥ 3 total graph of sunlet graph Sn is cordial.

Proof. Let vi(1 ≤ i ≤ n) be the consecutive vertices on the cycle Cn, v′
i be the pendant

vertices adjacent to vi respectively. Let ei = vivi+1 be the edges on the cycle and e′
i be

the pendant edges incident to vi respectively.
Define a binary labeling f : V (S+++

n ) → {0, 1} as in Table 18 and |E0| and |E1| of
S+++

n for the case n ≥ 6 are given Table 19:
Therefore S+++

n is cordial. �
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Table 11: cordial labeling of C−−−
n for the case n ≥ 8.
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Table 12: |E0| and |E1| of C−−−
n for the case n ≥ 8

n f (v1)f (v2) · · · f (vn) f (e1)f (e2) · · · f (en)

3 101 100
4 11100 0001
5 10101 00011
6 10101 110101
7 1010101 1101000

Table 13: Cordial labeling ofC−+−
n for the case 3 ≤ n ≤ 8.

Theorem 3.5. Total graph of Comb graph is cordial.

Proof. Let G = Pn

⊙
K1(n ≥ 3) be a comb on 2n vertices. Let vi(1 ≤ i ≤ n) be the

consecutive vertices of degree 2, v′
i(1 ≤ i ≤ n) be the pendant vertices adjacent to vi

respectively. Let ei = vivi+1(1 ≤ i ≤ n − 1) be the edges and e′
i(1 ≤ i ≤ n) be the

pendant edges incident to vi respectively. Define a binary labeling f : V (G) → {0, 1}
as in Table 20 and |E0| and |E1| of total graph of comb for the case n ≥ 6 are as shown
in Table 21.
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Table 14: cordial labeling of C−+−
n for the case n ≥ 8.
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Table 15: |E0| and |E1| of C−+−
n for the case n ≥ 8
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Table 16: Cordial labeling of C−−+
n .

Theorem 3.6. Total graph of Star K1,n wheren ≡ 0, 1, 3, 4, 5, 6(mod 8) is cordial.

Proof. Let v0 be the central vertex and vi(1 ≤ i ≤ n) be the pendant vertices of K1,n.

Let ei = v0vi(1 ≤ i ≤ n) be the pendant edges.
Define a binary labeling f : V (G) → {0, 1} as in Table 22 and |E0| and |E1| of total

graph of Star for the case n ≥ 6 are as shown in Table 23. �

4. Conclusion

We did not get the cordial labeling of Gxyz for some specific values of n when G is
isomorphic to path, cycle and star. One of the future work on this paper is to find some
more standard graphs G for which the transformation graphs are cordial.
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Table 17: |E0| and |E1| of C−−+
n
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Table 18: Cordial labeling of S+++
n for the case n ≥ 6.
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Table 19: |E0| and |E1| of S+++
n

for the case n ≥ 6
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Table 20: Cordial labeling of total graph of Comb for the case n ≥ 6.
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Table 21: |E0| and |E1| of total graph of comb for the case n ≥ 6.
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Table 22: Cordial labeling of total graph of Star for the case n ≥ 6.
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48 += rn 0 

58 += rn 1 
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n 1 

Table 23: |E0| and |E1| of total graph of Star for the case n ≥ 6.
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