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Abstract: 
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Introduction 
The Concept of Fuzzy Lattice was already introduced by Ajmal,N[1], S.Nanda[4] and 

WilCox,L.R [5] explained modularity in the theory of Lattices, G.Gratzer[2], 

BarDalo, G.H and Rodrigues,E[3] Stern,m[6] explained semimodular Lattices, 

M.Mullai and B.Chellappa[7] explained Fuzzy L-ideal. A few definitions and results 

are listed that the fuzzy semimodular lattice using in this paper we explain fuzzy 

semimodular lattice, Definition of fuzzy semimodular lattice, Characterization 

theorem of Fuzzy semimodular lattice and some examples are given, Fuzzy Modular 

Lattice satisfy P2 and P3. 

 

Definition: 1.1 

A Fuzzy lattice L and µ (a)  L. We say that µ (aʹ)  L is a Fuzzy complement of  

µ (a) if µ (a  a
ʹ

) = µ (0) and µ (a  a
ʹ

) = µ (1) we denote the Fuzzy set of Fuzzy 

complements of  µ(a) by C µ (a)  . 

 

Theorem 1.1   

Let L be a Finite Fuzzy Semimodular lattice µ(a), µ (b)  L, µ (a)< µ (b) , 

 µ (b
ʹ

)  Cµ (b) \C µ (a)  then µ [(a  b
ʹ

)  b]= µ (a) and µ (a)  µ (b
ʹ

) is a co-atom. 
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Proof   

Let L be a finite Fuzzy Semimodular lattice and µ (a), µ (b)  L, µ (a)< µ (b) and   

let µ (bʹ)  C µ (b) \  C µ (a)   

 µ (a)  µ (b
ʹ

) < µ (b)  µ (b ), µ (b )  C µ (b) \ C µ (a)   

 µ (a)  µ (b
ʹ

) = µ (0) and µ (b
ʹ

) C µ (a)   

Also µ (a) < µ (b)   µ (a) µ (b
ʹ

) < µ (b)  µ (b
ʹ

) 

 µ (a) µ (b
ʹ

) < µ (l) 

We have µ ( a b
 ́
)  µ (b) = µ (a) µ ( b

 ́
 b ) 

                                          = µ (a)  µ (l) 

                                          = µ (a  l) 

                                          = µ (l) 

µ ( a b
 ́
) µ (b) < µ (b) 

Also µ (a) < µ (a)  µ (b
ʹ

), µ (a) < µ (b) 

 µ (a)  µ (a) < µ ( a b
 ́
)  µ (b) 

 µ (a)  µ (a b
 ́
)  µ (b) < µ (b) and µ (a) < µ (b) 

 µ (a)  µ ( a b
 ́
)  µ (b) 

As L is Fuzzy Semimodular 

µ (a) = µ ( a b
 ́
)  µ (b) < µ (b) 

 µ (a)  µ ( b
 ́
)> µ (b)  µ (b

 ́
)= µ ( l )  

 µ (a)  µ ( b
 ́
) is a co-atom. 

 

Theorem 1.2  

Let L be a Finite Fuzzy Semimodular lattice µ (a) , µ (b) L , µ (a) < µ (b),  

µ (b
ʹ

)  Cµ (b) \ C µ (a)  . If there exists µ (c)   L. Such that µ (b
ʹ

) < µ (c) and µ (a)  

µ (c) = µ (1) then µ (c)  C µ (a). 

 

Proof  

To Prove µ (a)  µ (c) = µ (0) 

If µ (a)  µ (c) > µ (0) 

 

Then there is µ (a1) such that 

µ (0)  µ (a1)   µ (a)  µ (c) 

Also µ (a1)   µ (a) < µ (b)  

 µ (a1)  µ (b
ʹ

) = µ (0) 

µ (o)  µ (a1)   µ (b
ʹ

) < µ (a1)  µ (b
ʹ

) 

on the other hand µ (a1) < µ (c)and µ (b
ʹ

) < µ (c) 

 µ (a1)  µ (b
ʹ

)  µ (c) 

 µ (c) = µ (a1)  µ (b
ʹ

) 

We conclude µ (a)  µ (b
ʹ

) = µ (a  a1)  µ (b
ʹ

) 

                                           = µ (a)  µ (a1  b
ʹ

) 

                                           = µ (a)   µ (c) 

                                           = µ (1) 
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But from µ (a) < µ (b) and µ (b)  µ (b
ʹ

) = µ (0) 

We get µ (a)  µ (b
ʹ

) = µ (0) so µ (b
ʹ

)  C µ (a)   

 

Which is a contradiction  

Hence µ (a)  µ (c) = µ (0) 

 

Theorem: 1.3 

Let L be a finite Fuzzy Semimodular lattice µ (a), µ (b) L.  

µ (a) < µ (b), µ (b
ʹ

)  C µ (b) \ C µ (a)  . If there exists an atom µ (a1)  L. such that  

µ (a1)  µ (a  b
ʹ

) = µ (1) then µ (a1  b
ʹ

) is a Fuzzy complement of µ (a) and  

µ (b
ʹ

) < µ (a1  b
ʹ

). 

 

Proof 

We have µ (a  b
ʹ

) = µ (0) and 

 µ (b
ʹ

)  C µ (a) µ (a  b
ʹ

) < µ (1)  
From µ (a1)  µ (a  b

ʹ
) = µ (1)  

We have µ (a1)  µ (a  b
ʹ

) and so  

µ (a1)  µ (a  b
ʹ

) = µ (0) 

This implies µ (a1  b
ʹ

) = µ (0) 

So, by the Fuzzy Semimodular Property  

µ (b
ʹ

) < µ (a1  b
ʹ

) 

Now by using theorem 1.2 

 We Conclude µ (a1  b
ʹ

)  C µ (a) 

 

Definition: 1.2 

Let L be a Fuzzy Modular Complemented Fuzzy lattice then  

P:  µ(a)≠µ(b)  L , if C µ (a)  ≠ ϕ and C µ (b)  ≠ ϕ  then C µ (a)  ≠ C µ (b) . 

 

Definition: 1.3 

Let L be a Fuzzy lattice consider a pair (µ(a), µ(b))  L
2    

such that  

µ(a) < µ(b)  C µ (a)  ≠ ϕ and C µ (b)  ≠ ϕ . If L is Fuzzy distributive then  

Q1   : there exists (µ (a
ʹ
), µ(b

ʹ
))  C µ (a)   × C µ (b)  such that µ(bʹ)  µ(a

ʹ
) . 

 

Definition: 1.4  

Let L be a Fuzzy lattice consider a pair (µ(a), µ(b))  L
2   

such that µ(a) < µ(b), C µ (a)  ≠ ϕ and C µ (b)  ≠ ϕ . If L is Fuzzy distributive then,  

Q2 :  µ(b
ʹ

)  C µ (b)   there exists µ(a
ʹ

)  C µ (b)   such that µ(bʹ)  µ(a
ʹ

).  

 

Theorem: 1.4 

Let L be a Finite Fuzzy Semimodular lattice. µ(a), µ(b)  L Such that 

 µ(a) < µ(b) and C µ (b)  ≠ ϕ . If C µ (a) ≠ C µ (b)   then  µ (b
ʹ

)  C µ (b) / C µ (a). There 

exists 

µ(c)   C µ (a)   such that µ (b
ʹ

) < µ(c).  
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Proof 

Let L be as stated and let µ(a), µ(b)  L .  

µ(a) < µ(b) and µ(a
ʹ

)  C µ (a)  / C µ (b).  

Let µ (b
ʹ

)  C µ (b) / C µ (a) 

We have µ (a
ʹ

 b) = µ (1) 

And µ(a
ʹ

)  C µ (b)   

 µ (o) < µ (a
ʹ

b) 

Let µ (a1) be an atom such that 

µ (a1)  µ (a
ʹ

b) 

From µ (a a
ʹ

) = µ (o) and µ (a1)  µ (a
ʹ
) 

We have µ (a a1) = µ (o) and as µ (o) < µ (a1) 

And L is Fuzzy Semimodular we conclude  

µ(a) < µ (a a1) 

Since µ(a) < µ (b) and µ (a1)  µ (b) 

We get µ (a  a1)  µ (b) and as µ (a) < µ (b) 

We have µ (c)  C µ (a)   

Let µ (c) = µ (a1 b
 ́
) 

Then µ (a  c) = µ(a  (a1 b
 ́
)) 

  = µ((a  a1) b
 ́
) 

  = µ(b  b
 ́
) 

  = µ(1) 

By the theorem 1.3 

We Conclude µ (c)  C µ (a)  . 

 

Corollary 1.1   

Let L be a finite Fuzzy Semimodular lattice. If µ (a), µ (b)  L. Such that  

µ (a) < µ (b) and C µ (b)  ≠ ϕ  and C µ (a) ≠C µ (b)  then (µ (a) , µ (b)) satisfies Q2 . 

 

Proof   

Let L be a finite Fuzzy Semimodular lattice. 

Let µ (a), µ (b)  L be such that µ (a) < µ (b), C µ (b)  ≠ ϕ  and C µ (a) ≠C µ (b) 

Let µ(b
 ́
)  C µ (b)  

If µ(b
 ́
)  C µ (b)  / C µ (a)   then by the theorem 4.8 there exists µ(a

 ́
)  C µ (a)  such 

that µ(b
 ́
) < µ(a

 ́
) in particular µ(b

 ́
)   µ(a

 ́
)   C µ (a)  then take µ(a

 ́
) = µ(b

 ́
). 

 

Corollary 1.2  

(i) Finite Complemented Fuzzy Semimodular lattice Satisfy Q2 . 

(ii) Let L be Finite Fuzzy Semimodular lattice  µ (a), µ (b)  L such that Cµ (a) ≠ ϕ , 

 Cµ (b)≠ ϕ and µ (a) < µ (b). Then (µ (a), µ (b)) Satisfies Q1. 

 

Proof  

Proof of (i): 

Let L be a Finite Complemented Fuzzy Semimodular lattice and ( µ (a), µ (b) )  L
2  

. 
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First we note, that on a Finite Complemented Fuzzy lattice if we show that Q2 holds  

when µ (a) < µ (b) then this Property is also valid when µ (a) < µ (b). 

Let µ (a) < µ (b). 

Then Property holds when µ (b
ʹ

)  Cµ (a) 

Suppose µ (b
ʹ

)  Cµ (b)/ Cµ (a).  

By the theorem 1.1, the Fuzzy element µ (a)  µ (b
ʹ

) is a co-atom. 

It is easy to see that there is a complement µ (a1) of µ (a)  µ (b
ʹ

) which is an atom. 

So by theorem 1.3, µ (b
ʹ

) < µ (b
ʹ

)  µ (a1) and Q2 is Satisfied. 

 

Proof of (ii) 

Let L be a Finite Fuzzy Semimodular lattice µ (a), µ (b)  L. such that Cµ (a) ≠ ϕ , 

Cµ (b)≠ ϕ and µ (a) < µ (b). 

 

If Cµ (a) ≠ Cµ (b) then, by corollary 1.1(µ (a), µ (b)) Satisfies Q2 and therefore  

Satisfies Q1. 

If Cµ (a)  Cµ (b) then choose µ (a
ʹ

)  Cµ (a) and consider the pair 

(µ (a
ʹ
), µ (a

ʹ
))   Cµ (a) × Cµ (b) 

 

Example: 1.1  

Here is an example for Finite Fuzzy Semi modular lattices which do not satisfy Q2 . 

 

Verification: 

 
 

In this figure µ (bʹ)  µ (aʹ)  

Q2 is not statisfied. 
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Definition: 1.5  

Let L be a Fuzzy lattice consider a pair (µ (a), µ (b))  L
2 . 

Such that µ (a) < µ (b) , 

 Cµ (a) ≠ ϕ and Cµ (b)≠ ϕ. If L is Fuzzy distributive then 

P1 : There exists (µ (a
ʹ

), µ (b
ʹ

))  Cµ (a) × Cµ (b) Such that µ (b
ʹ

) < µ (a
ʹ

)  

 

Definition: 1.6 

Let L be a Fuzzy lattice consider a pair (µ (a), µ (b))  L
2 . 

Such that µ (a) < µ (b) ,  

Cµ (a) ≠ ϕ and Cµ (b)≠ ϕ. If L is Fuzzy distributive then 

P2 : µ(b
ʹ

)  Cµ (b) there exists µ (a
ʹ

) Cµ (a) such that µ (b
ʹ

) < µ (a
ʹ
). 

 

Definition: 1.7  

Let L be a Fuzzy lattice consider a pair (µ (a), µ (b))  L
2 . 

Such that µ (a) < µ (b) ,  

Cµ (a) ≠ ϕ and Cµ (b)≠ ϕ. If L is Fuzzy distributive then 

P3 : µ(a
ʹ

)  Cµ (a) there exists µ (b
ʹ

) Cµ (b) such that µ (b
ʹ

) < µ (a
ʹ
). 

 

Theorem: 1.5  

Fuzzy modular lattices satisfy P2 and P3  

 

Proof: 

It is enough to show P2 because this implies P3 by Fuzzy duality.  

Let L be a Fuzzy modular lattice. 

Consider µ (a), µ (b)  L Such that µ (a) < µ (b), Cµ (a) ≠ ϕ and Cµ (b)≠ ϕ. 

For all µ (b
ʹ

)  Cµ (b) choose µ (a
ʹ

)  Cµ (a). We will prove that 

µ (a
ʹʹ

) = µ (a
ʹ

b)  µ (b
ʹ

) is a Fuzzy 

Complement of µ (a) greater than µ (b
ʹ

) 

In fact µ (a a
ʹʹ

)  min{ µ (a), µ (a
ʹ

) } 
 

 min{ µ (a), µ (a
 ́

 b)  µ(b
ʹ

)} 

 min{ µ (a)  µ (a
 ́

 b) , µ(b
ʹ

)} 

  min{ µ (a  a
 ́ 
)  µ(b) , µ(b

ʹ
)} 

 min{µ(b) , µ(b
ʹ

)} 

             = µ (b  b
ʹ

)           

                        = µ(1) 

Also µ(a)  (( µ(a
ʹ

 b)  µ(b
ʹ

)) = µ(a)  ((( µ(a
ʹ

 b)  µ(b
ʹ

))  µ(b) )      

            = µ(a)  ((µ(a
ʹ

 b)   µ(b
ʹ

 b) )  

   = µ(a)  µ(a
 ́
)   µ(b)    

           = µ(0)    

 

We have µ(b
 ́
)  µ(a

ʹ  ́
) and if µ(b

 ́
) = µ(a

ʹ  ́
) 

 

Then we would have µ(a) < µ(b), 

µ(a  b
ʹ

)  = µ(b  b
ʹ

) = µ(0)    and  

µ(a  b
ʹ

)  = µ(b  b
ʹ

) = µ(l) 
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which contradicts the Fuzzy modularity of L. 

Conclusion 
The paper is proved that Let L be a Finite Fuzzy Semimodular lattice µ(a), µ (b)  L, 

µ (a)< µ (b) , µ (b
’
)  Cµ (b) \C µ (a)  then µ [(a  b

’
)  b]= µ (a) and µ (a)  µ (b

’
) is a co-

atom, Let L be a Finite Fuzzy Semimodular lattice µ (a) , µ (b) L , µ (a) < µ (b),  µ 

(b
ʹ

)  Cµ (b) \ C µ (a)  . If there exists µ (c)   L. Such that µ (b
ʹ

) < µ (c) and µ (a)  µ 

(c) = µ (1) then µ (c)  C µ (a),  Let L be a finite Fuzzy Semimodular lattice µ (a), µ (b) 

L. µ (a) < µ (b), µ (b
ʹ

)  C µ (b) \ C µ (a)  . If there exists an atom µ (a1)  L. such that 

µ (a1)  µ (a  b
ʹ

) = µ (1) then µ (a1  b
ʹ

) is a Fuzzy complement of µ (a) and µ (b
ʹ

) 

< µ (a1  b
ʹ

),  Let L be a Finite Fuzzy Semimodular lattice. µ(a), µ(b)  L Such that 

µ(a) < µ(b) and C µ (b)  ≠ ϕ . If C µ (a) ≠ C µ (b)   then  µ (b
ʹ

)  C µ (b) / C µ (a). There 

exists µ(c)  / C µ (a)   such that µ (b
ʹ

) < µ(c) and Fuzzy modular lattices satisfy P2 and 

P3. 
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