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Abstract 
 
In this paper, we consider three-space-problem in locally convex spaces for 
various types of “property (P)”, like- polar semi-reflexivity, polar reflexivity, 
semi-reflexivity, reflexivity, inductive semi-reflexivity, inductive reflexivity, 
B-semireflexivity, B-reflexivity. Our purpose is to harmonize several known 
positive solutions to three-space-problem and to investigate for some new 
results.  
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1. Introduction and Preliminaries 
Let E[τ] be a locally convex space and  F a (closed) subspace such that F and the 
corresponding quotient E/F   possess a certain property P; does E also possess P?. 
This so called problem is called a three-space-problem. If the answer to such a 
question is positive (affirmative), then we say that the property P is three-space-stable 
property or simply three-space property. 
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This problem can be put in terms of a short-exact sequence as follows: 
Le E[τ] be a locally convex space and F is a (closed) subspace of E.    
If a short exact sequence 
   o → F ― i→ E  ― q→ E/F ื o      (1) 
 
of locally convex space E, a subspace F of E and the corresponding quotient E/F, is 
given in which the outer terms F and E/F possess certain property (P), whether the 
middle term, space E possess the property (P)?. 
 
Throughout this paper, E[τ] will represent a locally convex Hausdorff topological 
vector space (abbreviated as locally convex space) over K (real or complex field). Its 
dual is denoted as E′. The strong dual of E[߬] is E′[τb(E)] and the bidual of E[߬] is E′′  
= (E′[τb(E)])′. If E′′= E, then E[߬] is called semi-reflexive. A semi-reflexive locally 
convex space E[߬] is called reflexive provided τ = τb(E′). Following G. Köthe [1], let 
τo be the topology on E′ of uniform convergence on τ-precompact subsets of E and 
τoobe the topology on (E′[τo])′ of uniform convergence on τo-precompact subsets of E′. 
If ( E′[τo])′ = E, then E[τ] is called polar semi-reflexive, and polar reflexive if further τ 
= τoo . The so called p-complete spaces and p-reflexive spaces of Brauner [2] are 
nothing but polar semi-reflexive and polar reflexive, respectively (see [3]). We also 
note that polar reflexivity is the t-reflexivity of Kye [4].  
 
The strongest locally convex topology on E′ for which all τ-equicontinuous subsets 
are bounded is denoted by τ*, called inductive topology. The absolutely convex 
subsets of E′ that absorbs all τ-equicontinuous subsets of E′ form a basis of 
neighborhoods of 0 in E′[τ*]. According to [5], if (E′[τ*])′ coincides with E, then E[τ]  
is called inductively semi-reflexive. Moreover, if τ = τ** i.e. (τ*)*, then E[τ]  is called 
inductively reflexive.  
 
Let τr be the topology, called reflective topology, on E of uniform convergence over 
the smallest saturated class of sets generated by R , where R is the class of all the 
absolutely convex bounded subset B of the dual E′ whose span space  E′B is a 
reflexive Banach space with B as unit ball; such sets B are called reflective sets. A 
locally convex space E[τ] is said to be B-semireflexive if  it is barreled  and E = Ẽ[ τr] 
( completion of E[τr] ). Further, if τ = τr, then E[τ] is called B-reflexive [6].  
 
 
2. Three-Space Stability of Various Reflexivities 
Let E be a Banach space, E′  and E′′ its first and second dual spaces. let Q denote the 
canonical embedding of E in to E′′ . Banach space E is called reflexive if the 
canonical embedding Q is an onto mapping. If dim (E′′/Q(E)) = n (finite), then we say 
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that E is quasi-reflexive of order n. If E′′/Q(E)  is reflexive, then E is called 
coreflexive.The so called quotient reflexive spaces of  Yorke [7]  are nothing but 
coreflexive spaces. 
In [8], James R. Clark,  proved that coreflexivity in Banach spaces is three-space 
stable: 
 
2.1. Theorem ([8]): If F is a closed subspace of a Banach space E , then E is 
coreflexive if and only if F and E/F are coreflexive.  
P. Civin and B. Yood [9] discussed three-space-problem on quasi-reflexivity in 
Banach spaces and proved the following: 
 
2.2. Theorem ([9]): If F is a closed subspace of a Banach space E, then E is quasi-
reflexive if and only if F and E/F are quasi-reflexive.  
We know that if E[τ] is a reflexive Banach space, then its closed subspace F and 
separated quotient E/F are both reflexive [1]. In the next theorem of Kung-Wei Yang, 
in [10], in which he discussed three-space stability of reflexivity in Banach spaces, we 
see that the converse of this result is also true.  
 
2.3 Theorem ([10]): If E is a Banach space and F is a closed subspace of E, and if 
both F and E/F are reflexive then E is reflexive. 
From these theorems it is obtained that in Banach spaces, each of coreflexivity, quasi-
reflexivity and reflexivity is a three-space stable property.  
 
Let E[τ] be a locally convex space. If τc (resp. τb*) is the topology on E′ of uniform 
convergence on the class of compact disks (resp. strongly bounded subsets) of E[τ], 
and if τcc (resp. τb**)  is the topology on (E′[ τc])′ ( resp. (E′[ τb*])′ )  of uniform 
convergence on the class of τc -compact disks  in E′[ τc] ( resp. strongly bounded 
subset in E′[ τb*] ),  then E[τ] is called c-semi-reflexive if E = (E′[ τc])′ and further, if τ 
= τcc,E[τ] is called c-reflexive. It is clear that E=(E′[ τc])′ always holds, since (by 
definition)  τc  is coarser than the Mackey topology. So E[τ] is always c-semi-
reflexive. A locally convex space E[τ] is called b*-semireflexive if (E′[τb*]))′  = E. 
Further, if τ =τb**, it is called b*-reflexive.   
 
Following theorem on three-space stability of c-reflexive spaces is due to [11]: 
2.4. Theorem B ([11]): Let F be a closed subspace of a locally convex space E[τ] 
such that F and E/F are c-reflexive, then E[τ] is c-reflexive, provided the quotient map 
from E to E/F lifts compact disks. 
 
We also have: In a locally convex space, b*-semireflexivity and b*-reflxivity are not 
three-space stable ([12], Theorem-11).  
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It is to be mentioned here, that polar semi-reflexivity is not three-space stable ( 
[12],Theorem-9).  
In locally convex spaces, completeness is a three-space stable property. That is, if 
E[τ] is a locally convex space and F is a closed subspace of E such that F and E/F are 
complete, then E[τ] is complete (see [13]).  
 
W. Roelcke and S. Dierolf[14] established some results on three-space-problem. They 
investigated that barreledness and ultra barreledness are three-space-stable properties. 
Further, if F is a subspace of a locally convex space E[τ] such that F is quasi-barreled 
and E/F is barreled, then E is quasi-barreled (Theorem 2.6).  Regarding semi-
reflexivity property, we have:   
 
2.5. Theorem ([14]): Let E[τ] be a locally convex space and  F a closed linear 
subspace such that the strong topology τb(F) on E′ോF┴ =  the quotient topology on 
E′ോF┴ induced from τb(E). That is τb( F, E′ോF┴ ) = (τb(E))qF┴. If F and the quotient 
E/F are semi-reflexive, then E[τ] is semi-reflexive.  
Proof:  Assume that τb( F , E′ോF┴ )  = (τb(E))qF┴  and the subspace F and the quotient 
E/F both are semi-reflexive. Let f א (E′[τb(E)])′. Since τb(E/F, F┴ ) on F┴  is finer 
than the relative topology from τb(E), so the restriction of f on F┴  is continuous on 
F┴[τb(E/F, F┴)]. We note that (E/F)′= F┴ and is given semi-reflexive, so we have x א 
E such that f(u) = u(x) for all u א F┴. Now G: (E′[τb(E)]) → K , G(u) = f(u) is a 
continuous linear functional which vanishes on F┴. Thus G induces a continuous 
linear functional G~ on E′ോF┴ [(τb(E))qF┴]. From hypothesis, τb(F , E′ോF┴ ) =  (τb 
(E))qF┴ , so by identifying F′ = E′ോF┴  and using the semi-reflexivity (given) of F, we 
must have y א F  such that G(u) = G~(u+ F┴ ) = u(y) for all u א E′. It follows that f(u) 
= u(x + y) for all u א E′. Hence f א E. Thus E′′ = E and E[τ] is semi-reflexive. 
 
For a general locally convex space, semi-reflexivity is not three-space stable (see [14], 
Example-1.5)  
 
Now we have the following result on three-space stability of semi-reflexivity: 
 
2.6. Theorem ([14]): If E[τ] is a locally convex space and F is a closed subspace of E 
which is an (F)-space. If F and E/F are semi-reflexive, then E[τ] is semi-reflexive.   
 
Proof: Assume that F and E/F are semi-reflexive. Since F is an (F)-space, so it is 
countably quasi-barreled and its strong dual is bornological. Therefore, by [14], 
lemma-4.1, τb( F , E′ോF┴ )  = (τb(E))qF┴  holds. By theorem-2.5, the proof is 
complete. 
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We know that inductively semi-reflexive space is semi-reflexive. Further, if E[τ] is an 
(F)-space, then it is inductively semi-reflexive if and only if it is semi-reflexive (see 
[5]).  
Now we assert the followong: 
 
2.7. Theorem: If F is a closed subspace of an (F)-space E[τ] such that F is also (F)-
space, and if F and E/F are inductively semi reflexive, then E[τ]  is inductively semi 
reflexive. 
 
Proof: Assume that F and E/F are inductively semi reflexive. Since inductively semi-
reflexive space is semi-reflexive, F and E/F are semi reflexive. Further, subspace F is 
an (F)-space, so theorem-2.6 is applicable and so  E[τ] is semi-reflexive. Since semi-
reflexive (F)-space is reflexive and a reflexive (F)-space is inductively reflexive, E[τ] 
is inductively reflexive (and inductively semi-reflexive). 
 
2.8. Corollary : If F is a closed subspace of an (F)-space E[τ] such that F is also an 
(F)-spaces, and if  F and E/F are inductively reflexive, then  E[τ]  is inductively  
reflexive. 
 
These results on three-space stability of inductive (semi) reflexivity are restricted to 
the case where the subspace F is an (F)-space. However we have a generalization in 
the following:   
 
2.9. Theorem ([16]): If F is a closed subspace of a locally convex space E[τ], and if E 
and E/F are inductively semi-reflexive, then E[τ] is inductively semi-reflexive.  
Proof: Consider the short exact sequence 
o → F ― i→ E  ― q→ E/F ื o  (1) 
Let us consider the inductive topology τ* on E′. Note that F′ = E′ോF┴  and  (E/F)′ = 
F┴. 
 
Let τˆ= relative topology on F induced from E[τ],   τq = quotient topology on E/F,  τˆ* 
= the inductive topology on F′ (the dual of F[τˆ]), and τq* = the inductive topology on 
(E/F)′ (the dual of E/F[τq]). Now we prove some lemmas. 
 
Lemma-1: If F is a closed subspace of a locally convex space E[τ], then 
τˆ* is equal to  the quotient topology  (τ*)q(E′ോF┴) on E′ോF┴  from E′[τ*].  i.e. τˆ* = 
(τ*)q(E′ോF┴) . 
 
Proof: We prove   τˆ* ൒  (τ*)q(E′ോF┴)). Since τˆ* is the strongest locally convex 
topology on F′ such that all τˆ–equicontinuous set in F′ are bounded. Therefore, it is 
sufficient to prove that all τˆ– equicontinuous set in F′ are (τ*)q(E′ോF┴)-bounded. let  
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Aؿ  F′ be a  τˆ-equicontinuous subset. That is A = i′(B), where B  ؿ E′ is τ-
equicontinuous. Since B is τ*-bounded , A is (τ*)q(E′ോF┴)-bounded. So   τˆ* ൒  
(τ*)q(E′ോF┴).  
 
We prove   τˆ* ൑ (τ*)q(E′ോF┴). Let W be a τˆ* -neighborhood of 0. Then W absorbs all 
τˆ–equicontinuous subset of F′ and so (i’)-1(W) is a τ*- neighborhood of 0. So W is a 
(τ*)q(E′ോF┴) -neighborhood of 0. Hence τˆ* ൑ (τ*)q(E′ോF┴). 
 
Lemma-2: If F is a closed subspace of a locally convex space E[τ], then the relative 
topology  (τ*)ˆ on F┴ induced from E′[τ*] is coarser than τq*  i.e.    (τ*)ˆ ൑τq*. 
 
Proof: Let V be a  (τ*)ˆ -neighborhood of 0. By definition of induced topology, we 
have a τ* –neighborhood of 0, say U such that  Uת F┴  ؿ V. So U ת F┴  absorbs all 
τˆ -equicontinuous subset of F┴  and so it is a τq*-neighborhood of 0. Hence (τ*)ˆ൑  
τq*. 
 
Lemma-3 : Following relations among topologies on the space E′ോF┴ hold: 
τk( F , E′ോF┴ )  = τb( F , E′ോF┴ )  = τˆ* = (τ*)q(E′ോF┴)൒  (τb(E))q  ൒τb( F) . 
 
Proof: Since F is inductively semi-reflexive, (F′(τˆ*))′ = F. So τˆ* is compatible to the 
dual pair (F′, F). Hence τk( F , E′ോF┴ )  = τb( F , E′ോF┴ )  = τˆ*. On the other hand, τˆ* 
= (τ*)q(E′ോF┴) by lemma-1,  and (τ*)q(E′ോF┴)൒  (τb(E))q by the fact that τb(E) is always 
coarser than τ*, and (τb(E))q  ൒τb( F)  by [1], §22,2(4)-line 8 in its proof.  
 
Lemma-4 : In the subspace F┴ we have: 
τk( E/F, F┴)  = τb( E/F, F┴) = τq*  ൒  (τ*)ˆ   ൒  (τs(E))ˆ  =τs(E/ F) . 
 
Proof: E/F is inductively semi reflexive i. e. ((E/F)′[τq*])′ = E/F and so τk( E/F, F┴)  = 
τb( E/F, F┴) = τq*. By  lemma-2,  τq*  ൒  (τ*)ˆ . By [1], §22,2(1),  (τs(E))q  =τs(E/ F), 
and (τ*)ˆ   ൒  (τs(E)) is obvious. 
Now we continue the proof of the theorem. 
 
From lemma 3 and 4 we see that the sequence          
o → (F┴[(τ*)ˆ]) ― q′→( E′[τ∗] )― i′→( F′[ τˆ* = (τ*)q(E′/F┴)] ) ื o (2). 
is exact,  algebraically and topologically.     
 
Let E1′′ be the dual of E′[τ∗] i.e. E1′′ = ( E′[τ∗])′. Let x′′ א E1′′. The linear functional 
x′′ is τ*-continuous on E′, its restriction x′′| F┴ to the subspace F┴=(E/F)′  is (τ*)ˆ-
continuous and so it is in the dual of (E/F)′[ τq* ].But E/F is inductively semi-
reflexive, so ((E/F)′[ τq* ])′ = E/F. Hence x′′| F┴א E/F. So there exists x1א E such that 
x′′(u) = u(x1)  for all u א F┴. Therefore,  x′′ - x1 is a continuous linear functional on 
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E′[τ∗] which vanishes on F┴. In particular, for any neighborhood U of 0 in E′[τ∗], x′′ 
- x1א Uo. This means that x′′ - x1 is bounded linear functional on U + F┴ . By lemma-
1, x′′ - x1 is bounded on any neighborhood of 0 in F′[ τˆ*]. So there exists x2א F such 
that  
 
(x′′ - x1) (x′) = x′( x2) for all x′ א F′. It implies that x′′ = x1 + x2א E + F ؿ E. So E1′′ = 
E, that is, ( E′[τ∗])′ = E. Hence E[τ] is inductively semi-reflexive. 
 
Recall that a locally convex space E[τ]  is called reinforced regular if every τs(E′, 
(E′[τ*])′)-bounded set in the second dual (E′[τ*])′ is contained in τs(E′, (E′[τ*])′)-
closure of some bounded set in E[τ]. Now we have the following, which is due to 
[16]: 
 
Lemma-5: If the quotient map q: E →  E/F lifts bounded sets with closure and if 
closed subspace F and the corresponding quotient E/F are reinforced regular, then E is 
reinforced regular.  
 
Now we have: 
2.10. Theorem([16]): If F is a closed subspace of a locally convex space E[τ] is such 
that both F and E/F are inductively reflexive, then E[τ] is inductively reflexive.  
 
Proof: Given that the subspace F and the quotient E/F are inductively reflexive. Note 
that inductively reflexive space is always inductively semi-reflexive (by definition) 
and also B-semireflexive ([17]). We also note that B-semireflexive space is a 
complete reflexive space ([6]). So F and E/F are inductively semi-reflexive as well as 
barreled and complete. Now, firstly, by theorem- 2.9, the locally convex space E[τ]  is 
inductively semi-reflexive. Secondly, three- space stability of barreledness (cf [14]) 
implies that E[τ]  is barreled. Thirdly, three-space stability of completeness implies 
that E[τ]  is complete. Now we prove that E[τ]  is bornological (same as 
ultrabornological, since E[τ] is complete). We note that each topology ߦ on the dual E′ 
of E[τ] satisfying τc(E) ൑  ξ ൑ τk(E) gives in E the same inductive topology ξ* and this 
topology is not weaker than τ. Hence E[τ] is ultrabornological  if and only if τ =  ξ* .  
 
Consider the sequences 
  o → F ― i→ E  ― q→ E/F ื o             (1) 
 
  o → (F┴[τc(E)| F┴]) ― q′→( E′[τc(E)] )― i′→( F′[ (τc(E))q ) ื o        (2) 
The outer terms in (1) are inductively semi-reflexive and so reinforced regular. By the 
property of lifting of bounded sets by transposed mapping i′ and by lemma-5, the 
middle term E  is reinforced regular. Hence (τc(E))* = τb(E′)= τ (see [5], proposition 
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3.2). Hence E[τ] is bornological. Thus E[τ] is inductively semi-reflexive and 
bornological and therefore, by [5], theorem1.7, E[τ] is inductively reflexive. 
 
We investigate three-space stability of reflexivity in the following: 
2.11. Theorem: Let E[τ] be an (F)-space and F a closed subspace of E[τ] such that F 
is also an (F)-space. If F and E/F are reflexive, then E[τ]  is reflexive. 
 
Proof: Assume that F and E/F are reflexive and so semi-reflexive. Since F as well as E 
is an (F)-space, therorem-2.6 is applicable. Therefore E[τ] is semi-reflexive. But an 
(F)-space is reflexive if and only if it is semi-reflexive (see [1]), so E[τ] is reflexive. 
Recall that if E[τ] is B-semi-reflexive, then it  is a  complete reflexive space. ([6], 
theorem-12).  
 
We, further, investigate three-space stability of B-semireflexivity and we have: 
2.12. Theorem: Let E[τ] be an (F)-space and F a closed subspace of E[τ] such that F 
is also an (F)-space. If   F and E/F are B-semireflexive, then E[τ]  is B-semireflexive. 
 
Proof: If  F and E/F are B-semireflexive, then  both  F and E/F are reflexive and so by 
theorem-2.11, E[τ] is reflexive. Since E[τ] is an (F)-space, and a metrizable locally 
convex space is semi-reflexive if and only if it is B-semireflexive (see [17], theorem-
2.5), hence E[τ] is B-semireflexive. 
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