MATRIX-GEOMETRIC METHOD FOR QUEUEING MODEL WITH SYSTEM BREAKDOWN, STANDBY SERVER, PH SERVICE AND PH REPAIR

M. ReniSagaya Raj¹, B.Chandrasekar²

^{1,2} Department of Mathematics, Sacred Heart College(Autonomous), Tirupattur - 635601, Vellore District, Tamil Nadu, S.India.

Abstract

In this paper, we s tudy a s ystem repair problem and present N system with one working and the other in standby. When the system fails it goes to repair and instantaneously a standby server becomes the working one. The repair time of the server and service time of the server are assumed to be of discrete phase-type d istribution. We s how the process that g overns the s ystem is a quasi-birth and death process, we per form steady-state analysis of this model. The time spent by a failed system in service and the total time in the repair facility ar e s hown t o b e o f p hase-type. S erver per formance measures ar e evaluated.

Keywords: System repair problem, Discrete PH distribution, quasi-birth and death process, Conditional probability of failure, Stationary distribution.

1. Introduction

In t his paper, we consider N s ystem and a st andby s ystem involving d iscrete distribution. Most of the research work addressing the machine repair problems has focused on reliable servers. In this research domain, the work by Kness[6], Hsieh[4], Van Der Duyn[15] and Wartenhout[14] provided steady state solution to the machine repair problems with no spares and no standby machines. Models for machine repair problems w ith s tandby machines have been d eveloped by Wank and L ee[13], Wank[12], Hs ieh and Wank[5] and S ivazlian and Wank[11]. While S ivazlian and Wank modeled failure and repair times of the machine using general distribution, the other three papers used exponential distributions for the same.

Neuts[9] po inted o ut t hat al l d iscrete d istribution w ith finite support can be represented by discrete-phase distribution. Alfa and Neuts[2] showed the elapsed time

representation for such d istribution. Alfa and Ca stro[1] considered these r esults for modelling a system that involved general d iscrete distribution. Thus, any d iscrete distribution is phase-type distribution. Given this analysis a general discrete renewal process can be expressed by considering the time a mong arrivals phase d istributed. Also Ruiz catro[10] model a d iscrete warm standby system and they show that the process covering this one is a discrete level-dependent M/G/1.

In this present paper, we study a standby system involving discrete distribution. We consider N system, one working and the other in standby, in repair or waiting for repair. There is a repairman. The standby system do not fail. The working system is subject to internal(non-repairable) and a ccidental external repairs. When the non-repairable failure occurs the system is removed from the system. When the working server under goes a repairable failure, it goes to repair. In both cases, a standby server becomes the working one instantaneously. When a system is repaired, it re-enters the system and is new. The time of the internal failure has a ge neral distribution and its PH representation is considered. We present a model where the repairability of the working failure can be independent of or dependent on the time system failure. The conditional probability is different types of failure are calculated in a matrix.

This paper is organized as follows. In section 2, we describe the model under study and give a brief review of PH-distribution. In section 3 & 4, dedicated to the Markov chain des cription methods and its st eady st ate an alysis u sing M atrix-analytical methods ar e pr esented. S ection 5, st ationary pr obability vector ar e cal culated. I n Section 6, we obtain system performance. In Section 7, we calculate the conditional probability of failure. In section 8, we give the numerical examples. Finally, we give the conclusion.

2. Phase-Type distribution

Poisson process and exponential distribution have very nice mathematical properties that m ake queue ing model w ith t hese t ractable. Ho wever, in applications t hese assumptions are highly restrictive. T o get away from Poisson/exponential models. Neuts[9] dev eloped t he t heory o f PH- distribution a nd r elated po int pr ocess. I n stochastic modelling, PH-distribution lend themselves naturally to algorithmic. In this section we review the discrete time PH-distribution.

Definition (Discrete phase-type distribution):

Let $\{X_n : n \in N\}$ be a discrete time Markov chine as defined with state space $S = \{1, 2, 3, ..., m, m+1\}$, where the first m states are transient and the last state is absorbing, and transition probability matrix

$$Q = \begin{bmatrix} T & t' \\ 0 & 1 \end{bmatrix}$$

and *T* is a square matrix of dimension *m*, t' is a column vector and 0 is a row vector of dimension *m*. Since *Q* is a transition matrix, we have $T_{ij} \ge 0$ and $t_i \ge 0 \forall i, j \in S$ and T1+t'=. Where 1 is the column vector of ones of the appropriate dimension *m*.

The probability d istribution of t he initial state is denoted with t her ow vector (α, α_{m+1}) . Let $Z = \inf(n \in N : X_n = m+1)$ be the random variable of the time to the absorbing state m+1. The d istribution of Z is called a d iscrete phase-type distribution with r epresentation (α, T) . Note that the k nowledge of (α, T) is sufficient since

$$t' = (I - T)1$$
 and $\alpha_{m+1} = 1 - \alpha 1$

Where *I* is the identity matrix of dimension *m*. The dimension *m* of *T* is called the order of the PH distribution and the transient states $\{1,2,3,\ldots,m\}$ are called the phase. The vector *t* contains the so-called exit probability.

The cumulative distribution function of the discrete PH distribution is

$$F_{Z}(z) = 1 - \alpha T^{z} 1$$
 for $z = 0, 1, 2, ...$

and its probability mass function is

$$f_Z(0) = \alpha_{m+1} f_Z(z) = \alpha T^{z-1} t'$$
 for $z = 1, 2, 3, ...$

Assumption 1. The failure times of the system are assumed to be exponential with parameter λ . The distribution of the service denoted by F_r , follows a p hase-type distribution PH(α , T) of order m.

$$F_r = \alpha T^{r-1}t', \quad r \in N, \qquad F_0 = \alpha_{m+1} = 0$$

Assumption 2. The repair time distribution is phase-type distribution $PH(\beta, S)$ of order N given by

$$G_r = \beta S^{r-1} S^0, \quad r \in N, \qquad G_0 = \beta_{n+1} = 0$$

Assumption 3. The r andom variable, the r epair t ime a nd t he wo rking s erver ar e independent.

Under this assumption, the system is governed by a Markov chine with n+1 states.

3. The Model Description

In this section, we first describe the system model. Then we derive a quasi-birth and death process of the system

The notation \otimes will stand for the kronecker product of two matrices. Thus, if A is a matrix of order $m_1 \times m_2$ and if B is a matrix of order $n_1 \times n_2$, then $A \otimes B$ will denote a matrix of order $m_1 n_1 \times m_2 n_2$ whose $(i, j)^{\text{th}}$ block matrix is given by $a_{ij}B$. For more details on kronecker products, we refer to B ellman [3]. B efore we describe the Markov chain the repairman model, we represent a review of PH-distribution.

The assumption of the system model are as follows

- When the working server fails and go est o repairs(repairman is idle), and a standby server becomes a working system. The block that represents this transition is $(t'\alpha \otimes \beta)$ of order $(m \times mk)$.
- When the m ain ser ver f ails and i f h as n ot completed any repair. The corresponding block is given by $(t' \otimes S)$.
- The working server fails and repair time is busy, fails system joins the queue. Once repaired, the server is returned back to normal working condition. The

corresponding block is $(t'\alpha \otimes S)$ of order $(mk \times mk)$

- Assumed that the repairman is subject to failure, which can occur even when the repairman is idle and the repaired goes to standby. The block governs this transition is $(T\alpha \otimes S')$ of order $(mk \times m)$.
- All server are in r epaired and one of them is r epaired. The corresponding block is given $(\alpha \otimes S'\beta)$
- The repairman remains busy, the block is $(T \otimes S'\beta)$ of order $(mk \times mk)$.
- There is neither failure n or completed r epairs. In the first case t here is a transition among the service phase or the repair phase separately. The block governed by T. The transition $N \rightarrow n$ is governed by the matrix S.
- There is neither fail arrives nor a repair is completed or at the same time, a failure and a repair occur. The block is $(T \otimes S + t'\alpha \otimes S'\beta)$ of order is $(mk \times mk)$.

4. Quasi-Birth and Death Process

This matrix represents a discrete Quasi-birth and death process was developed Neuts [9] to solve the stationary state probability for the vector state Markov process with repetitive st ructure. We develop the st eady-state probability. The corresponding transition rate matrix Q at this Markov chain has the block-tridiogonal form. Consider the generator matrix Q as shown below

$$Q = \begin{bmatrix} B_0 & C_0 & & & \\ B_1 & A_1 & A_0 & & \\ & A_2 & A_1 & A_0 & \\ & \ddots & \ddots & \ddots & \\ & & A_2 & A_1 & C_{N-1,N} \\ & & & B_{N,N-1} & B_{N,N} \end{bmatrix}$$
(1)

where

$$\mathbf{B}_0 = T, \mathbf{C}_0 = (t'\alpha \otimes \beta), \mathbf{B}_1 = (T \otimes S'), \mathbf{A}_1 = (T \otimes S) + (t'\alpha \otimes S'\beta), \mathbf{A}_2 = (T \otimes S'\beta), \mathbf{A}_0 = (t'\alpha \otimes S), \mathbf{C}_{N-1,N} = (t' \otimes S), \mathbf{B}_{N,N-1} = (\alpha \otimes S'\beta), \mathbf{B}_{N,N} = S.$$

5. Stationary Probability Vector

We start to discuss the method to obtain matrix *R* and stationary distribution vector *X*. F rom reference N euts [9] and L atouch and R amaswami [7]. L et $X = \{X_0, X_1, X_2, ..., X_N\}$ be the stationary probability vector c orresponding to the transition probability matrix(1). T

he vector X satisfies the matrix equation

$$XQ = 0, \quad X1 = 1 \tag{2}$$

By developing this equality in terms of the blocks (2) to (6), we have the equation system,

$$\mathbf{X}_{0} = \mathbf{X}_{0}\mathbf{B}_{0} + \mathbf{X}_{1}\mathbf{B}_{1} \tag{3}$$

$$X_{1} = X_{0}C_{0} + X_{1}A_{1} + X_{2}A_{2}$$
(4)

$$X_{2} = X_{1}A_{0} + X_{2}A_{1} + X_{3}A_{2}$$

$$X_{N-1} = X_{N-2}A_{0} + X_{N-1}A_{1} + X_{N}B_{N,N}$$
(5)

$$\mathbf{X}_{N} = \mathbf{X}_{N-1}\mathbf{C}_{N-1,N} + \mathbf{X}_{N}\mathbf{B}_{N,N}$$
(6)

Normalizing condition is

$$\sum_{i=1}^{N} X_{i} 1 = 1$$
(7)

Solving this equation system, applied to the discrete case, Let $R^1, R^2, R^3, ..., R^{n-2}$ be matrices of order $mk \times mk$

$$R^{j-1} = A_0 + R^{j-1}A_1 + R^{j-1}R^jA_2, \qquad J = 2,3,...,N-2$$

 $(A_i + R^jA_2), J = 2,3,...,N-2$

The probability vector $X_1, X_2, ..., X_{N-1}$ verify

$$X_{j} = X_{j-1}A_{0} + X_{j}A_{1} + X_{j+1}A_{2}, \qquad J = 2,3,...,N-2$$

If and only if

$$\mathsf{X}_{j} = \mathsf{X}_{j-1} \mathsf{R}^{j-1}, \qquad 1 \le j \le N-1$$

By successive substitutions, we have

$$X_{j} = X_{1} \prod_{k=1}^{j-1} R^{k}, \quad 1 \le j \le N-1$$
 (8)

Also we can express X_{N-1} and X_N in a matrix geometry form as

$$X_{N-1} = X_{N-2}R^{N-2}$$

$$X_{N} = X_{N-1}R^{N-1}$$

$$R^{N-1} = B_{N-1}(I - B_{N,N})^{-1}$$

$$R^{N-2} = A_{0}(I - A_{1} - R^{N-1}B_{N,N-1})^{-1}$$
(9)

The r est of t he matrices $R_1, R^2, R^3, \dots, R^{n-3}$ can be calculated r ecursively by t he following expression. Under the assumption that the matrix $(I - A_1 - R_{N-1}B_{N,N-1})$ is non-singular.

$$\mathsf{R}^{j-1} = \mathsf{A}_0 (I - \mathsf{A}_1 - \mathsf{R}^j \mathsf{A}_2)^{-1}, \qquad 1 \le j \le N - 1$$

The normalizing condition can be expressed as follows:

$$X_{0} = X_{0}B_{0} + X_{1}B_{1} \text{ and } X_{1} = X_{0}C_{0} + X_{1}[A_{1} + R^{1}A_{2}]$$

$$1 = X_{0}1 + X_{1}\left[\sum_{i=2}^{n}\prod_{j=1}^{i-1}R^{j}1 + 1\right]$$
(10)

The stationary probability vector is determined on calculation X_0 and X_1

$$(\mathbf{X}_{0}, \mathbf{X}_{1}) \begin{bmatrix} \mathbf{B}_{0} & \mathbf{C}_{0} & 1 \\ \mathbf{B}_{1} & \mathbf{A}_{1} + \mathbf{R}_{1}\mathbf{A}_{2} & U \end{bmatrix} = (\mathbf{X}_{0}, \mathbf{X}_{1}, 1)$$

$$(\mathbf{X}_{0}, \mathbf{X}_{1}) = (0, 1) \begin{bmatrix} I - \mathbf{B}_{0} & \mathbf{C}_{0} & 1 \\ -\mathbf{B}_{1} & \mathbf{A}_{1} + \mathbf{R}_{1}\mathbf{A}_{2} - I & U \end{bmatrix}^{-1}, \quad U = \sum_{i=2}^{N} \prod_{j=1}^{i-1} \mathbf{R}^{j} 1 + 1 \quad (11)$$

6. System Performance

We calculate the probability that the system is service at epoch k. The probability matrix at epoch is P^k , it is clear that,

$$A(k) = \sum_{i=0}^{N-1} P_i^k 1 = 1 - P_N^k 1$$
(12)

The probability P_i^k are determined from the Markov chain and

$$P_0^k = [(\alpha, 0)P^k]_{l \times m}, P_i^k = [(\alpha, 0)P^k]_{m[(i-1)k+1]+1:m(ik+1)}$$
$$P_N^k = [(\alpha, 0)P^k]_{m[(n-1)k+1]+1:m((N-1)k+1)+k}$$

Taking $\lim_{k\to\infty}$, we have the stationary availability

$$A = \sum_{i=0}^{N-1} X_i 1 = X_0 1 + X_1 \left(\sum_{i=1}^{N-1} \prod_{k=1}^{i-1} R^k \right) 1 = 1 - X_N 1$$
(13)

The non-availability is given by $\overline{A} = 1 - A = X_N$. Which is the probability that all the units are in repair or waiting for repair.

7. Conditional Probability of Failure

The failure occurs in the discrete distribution $PH(\alpha, T)$ and the repairman is idle, this is expressed by $P_0^{k-1}t'$. When i > 1, the repairs does not effect to this measure and in this case it is expressed as $P_i^{k-1}(t' \otimes 1)$.

The conditional probability of failure is given by the expression

$$b_{k} = P_{0}^{k-1}t' + \sum_{i=1}^{N-1} P_{i}^{k-1}(t' \otimes 1) \quad ($$
 14)

and stationary case it is equal to

$$b = X_0 t' + \sum_{i=1}^{N-1} X_i (t' \otimes 1) = X_0 t' + X_1 \left(\sum_{i=1}^{N-1} \prod_{k=1}^{i-1} \mathsf{R}^k \right) (t' \otimes 1)$$
(15)

Next we consider that a failure of the system occurs when all the systems are nonservice and we can write this new measure in transient regime as

 $b_s^k = P_{N-1}^{k-1}(t' \otimes 1)$

and in the stationary case

$$b_s = \mathsf{X}_{N-1}(t \otimes 1) = \mathsf{X}_1\left(\prod_{k=1}^{N-2} \mathsf{R}^k\right)(t' \otimes 1) \ (16)$$

8. Numerical Examples

In t his section, we app ly t he c alculation p erformed a bove t he practical case. T he methods were i mplemented i n m atlab programme. W e c onsider the f ollowing represents for t he PH-distribution of t he service time and repair time $\alpha(1,0,0)$ and $\beta(1,0,0)$

$$T = \begin{pmatrix} 0.7 & 0.3 & 0 \\ 0 & 0.4 & 0.6 \\ 0 & 0 & 0.6 \end{pmatrix}; \qquad S = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1.5 & 1.5 \\ 0 & 0 & 2 \end{pmatrix}$$

The matrix T indicates t he w orking s ystem has a n service t ime t hat u ndergoes successive decorating phases. The order of T and S are, respectively m = 2 and n = 3. Consequently, the matrices A_0, A_1 and A_2 are of order 6×6 ; C_0 and B_1 are of order 2×6 and 6×2 . By using the evation (11) R matrix, the sub-vector of the stationary probability vector are given below

$$X_0 = (0.2756, 0.1543, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)$$

$$X_1 = (0.0843, 0.0469, 0.0413, 0.0226, 0.0011, 0.0041, 0.0028, 0.0003, 0.0000)$$

$$\vdots$$

The per formance measures calculated in t his model depend on t he sub-vectors (X_0, X_1) , they can be explicitly determined, and they are b = 0.001

- The number of queued and waiting for repair is $M_a = 0.0776$
- The mean total expected in the repair facility is $M_L = 0.3651$

Conclusion

In this paper, we have a comparative analysis for a system repair problem where both the systems and the repairman can fail. The repair times of the systems and the service times of t he r epairman ar e modelled us ing d ifferent PH- distribution. Us ing Q BD process, we obtained the stationary probability distribution. We find that the behavior of t he d ifferent per formance measures considered in the paper is incentive t o the distribution of t he service t imes of t he r epairman. Our r esults can be t reated as performance evaluation tool for the concerned system which may be suited to many congestion situations arising in many practical applications encountered in computer and c ommunication systems, di stribution and s ervice s ectors, p roduction and manufacturing system, etc.,

References

- [1] A.S. Alfa and Castro IT, Discrete Time Analysis of a R epairable Machine, J.Appl Probab 39(3)503-516.
- [2] A.S. Alfa and M.F. Neuts, Modelling vehicular Traffic using the Discrete time Markovian Arrival Process, Transp. Sci., 29(2):109–117,1995.
- [3] R. Bellman, Introduction to matrix analysis, McGraw Hill, New York, 1960.
- [4] Y. Hs ieh, Opt imal assignment o f pr iorities for t he machine interference problems, Microelectron Reliab 37(1997),635â 640.
- [5] Y. Hsieh and K. Wang, Reliability of a repairable system with spares and a removable repairman, Microelectron Reliab 35(1995),197-208.
- [6] C. Knessl, On the distribution of the maximum number of broken machines for the repairman problem, SIAM J Appl Math 54(1994),508-547.
- [7] Latouche G, R amaswami V, In troduction to matrix methods in S tochastic Modelling, Phil adelphin: ASA-SIAM Se ries on St atistics a nd Applied probability.(1999)
- [8] M.F. N euts, P robability Di stributions o f ph ase-type, I n: L iber Amicorum Professor E miritus H .Florin. D epartment of Mathematics, U niversity of Lounvain, Belgium, pp 183–206.
- [9] M.F. Neuts, Matrix Gometric Solution in Stochastic Models: An Algorithmic Approach, John Hopkins University Press, Baltimore.
- [10] Ruiz-Castro J E, Per ez-Ocon R, F ernandez-Villodre G. A L evel-dependent general discrete system involving phase-type distribution, IIE Trans(in press) (2008a).

- [11] B.D. S ivazlian a nd K.H. W ang, D iffusion approximation t o the G/G/R machine r epair p roblem with warm s tandby spares, N av Res L ogistics 37(1990),753-772.
- [12] K. Wang, Profit ana lysis of the machine repair problem with cold standbys and two modes of failure, Microelectron Reliab 34(1994),1635–1642.
- [13] K. Wang a nd H. L ee, Co st an alysis of t he co ld-standby M/M/R m achine repair pr oblem w ith multiple modes of failure, M icroelectron R eliab 38(1998),435-441.
- [14] P. W artenhorst, N Par allel queu eing s ystems with server breakdowns a nd repair, Eur J Oper Res 82(1995), 302-322.
- [15] S.F.A. Van Der Du yn and P. Wartenhorst, Two machine repair model with variable repair rate, Nav Res Logistics 40(1993),495-523.

M.ReniSagaya Raj and B.Chandrasekar