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Abstract

The aim of this paper is to establish some results in connection with the
chaotic behaviours of the forward shift map o* on the generalised one-sided
symbol spacex’, m(=2)e N. We prove that o* is Devaney chaotic,

m !

Auslander —Yorke’s chaotic and generically & -chaotic. We also prove that
o 1S exact Devaney chaotic and as a consequence mixing Devaney Chaotic
and weak mixing Devaney Chaotic. It is further established that the shift map
o*on ' is topologically conjugate to the map £, (x)=mx(modl)on the

space R/ Z or equivalently conjugate to the map £, (z) =z" on the circle s*.

Keywords: Shift Map, Exact Map, Topological Transitivity, Topological
Mixing, Topological Conjugacy.
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1.Introduction:

Discretization of spaces gives birth to symbolic dynamics which is a very powerful
tool to analyse general dynamical systems in more effective ways. In fact, symbolic
dynamics is a topological dynamical system (x, ) where X is a compact metric
space and f:X — Xx is a continuous transformation. That is, 7 e C(X)=C(X,X),
the space of all continuous maps from X into X equipped with the sup norm. It is to
be noted that C(x) is a complete and separable metric space.

The chaotic behaviour of topological dynamical systems attracted the attention of the
researchers since the introduction of the most popular but curious word ‘chaos’ in
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1975 by T.Y. Li and James A. Yorke in their much stated paper ‘Period three implies
chaos’[11]. The basic ingredients of Li-Yorke chaos (as it is known today) are
uncountable scrambled sets and so called Li-Yorke pairs. In last few decades a quite
good quantum of knowledge has been added in the field of dynamical systems which
includes some innovative ideas and stronger ingredients of analysis such as
transitivity, mixing, sensitivity dependence on initial conditions, exactness etc. In
1980, J. Auslander and J.A. Yorke [1] defined chaos by associating the concept of
transitivity and sensitivity which is known as Auslander-Yorke chaos. Thereafter, in
1989, R.L. Devaney [7] posed the example of defining chaos in an another way to
study deterministic processes. The chaos defined by Devaney is known as Devaney
chaos today. A map s on a closed set X is called chaotic in Devaney’s sense or

Devaney chaotic (DevC in short) if
(i) 7 istransitive on X ,

(i) the set p( ) of all periodic points of  is dense in X , and
(iii) 7 exhibits sensitive dependence on initial conditions[2, 7].

Devaney chaos is important in analytical as well as application point of view. In the
year 1992, L. Snoha [21] introduced the concept of dense chaos as well as dense & -
chaos. The notion of distributional chaos was then introduced in 1994 by Schweizer
and Smital [19] and thereafter L. Wang gave the concept of distributional chaos in a
sequence in 2007[22]. Today, Devaney chaos has been studied in more extensive
ways i.e. Devaney chaos with much stronger conditions such as EDevC, MDevC and
WMDevC. A Devaney chaotic map f:X — X is said to exhibit exact Devaney chaos

(EDevC) [10] if it is exact, i.e., if for every non-empty open set U of X , there exists
some me Nsuch that /" (U)=X. On the other hand, a Devaney chaotic map
f:X — X issaid to exhibit mixing Devaney chaos (MDevC), if it is mixing, i.e., for
any pair of non-empty open sets U and ¥ of X, 3n, € N such that f"(U)NV = ¢,
Vn > n,. Further, the Devaney chaotic map f: X — X is said to exhibit weak mixing
Devaney chaos (WMDevC), if it is weak mixing i.e. fx s Is transitive on X x X i.e.
for every non-empty open sets U, of XxX, 3ne N such that /"(U)NV =¢.In
this paper, we have given a formal description of the generalised one-sided m -symbol
sequence space=’ = {0, 1, 2, ..m-1}" = {(x)7, :x, €{0L2,....,m-L},me N}, and
discussed the Devaney chaoticity of the forward shift maps*:=! —>=' . Form=2,
we have the symbolic dynamical systemX; which is a well known example of a
chaotic dynamical system. Many works have been done on this system and hence
many references of the binary sequence space X, and the forward shift map &* can
be found in various papers and books such as [3, 7, 8, 9, 12, 16, 17, 20]. It is easy to
understand that £ < X' and hence we can certainly expect that some of the results in
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(Z,,07) may be extended to (=, o").In fact, we have extended some of the concepts
available in the symbolic dynamical system (X,,0°)to(z!,o"). Here, we have
established that the forward shift map on the generalised m-symbol space = is DevC

and as a consequence it is chaotic in Auslander-Yorke’s sense. Further it is proved that
o' is EDevC (Exact Devaney chaotic) and consequently MDevC (Mixing Devaney
chaotic)and WMDevC (Weakly mixing Devaney chaotic)map. Further, we have
proved thato* : 3" — = is topologically conjugate to the map 7, (x) = mx(mod1) on
the space R/Z .

Note: In the whole paper we have used the “shift map” in place of “forward shift
map” and the symbolsc andXin lieu of o*and ! respectively for the sake of

simplicity. Also, by N we have denoted the set of natural numbers.

2. Basic Concepts and Results:
Definition 2.1: Auslander-Yorke chaotic maps [13]: A continuous map s on a

metric space X is said to be chaotic according to Auslander and Yorke if f is
transitive and s has sensitive dependence on initial conditions. So, it immediately
follows that a DevC map is always chaotic in Auslander-Yorke'’s sense.

Definition 2.2: Li-YorkePair [4]: A pair(x,y)e X? is called a Li-Yorke pair with
modulus  s>0if limSupd(f"(x),f"(¥))>6 and limfd(f"(x),f"(y))=0,

n—»0 n—»0

where 7 is a continuous transformation on the compact metric space (.x,d) . The set
of all Li-Yorke pairs of modulus & > 0 is denoted by LY (f,5).

Definition 2.3: Weakly and modified weakly chaotic dependence on initial
conditions[3]: A dynamical system (.x, ) is called weakly(resp. modified weakly)

chaotic dependence on initial conditions if for anyxe X and every neighbourhood
N(Xx) of x, there are y,ze N(X) [in modified weakly case y = x, z=x] such that

(v,z) € X?is Li-Yorke.

Definition 2.4: Generically ¢ -Chaotic maps[3]: The continuous map f:Xx — X on
a compact metric space X is called generically &-chaotic if LY(f,5)is residual in
X°.

Proposition.2.5[7]: A topological dynamical system(TDS) f:x —>Xx is
topologically transitive if for every pair of non-empty open sets U and » of X, there
exists n e N such that /" (U)NV # @.

Proposition 2.6[6]: Let X be a compact metric space and 7:X —X be a
continuous topologically mixing map. Then 7 is also topologically weak mixing.
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Proposition2.7[18]: Let7: X — X be a continuous map on a compact metric space
X . If Tis topologically weak mixing, then it is generically &-chaotic on X with
o =diam(X).

2.8: The topological dynamical system (X, ,o0):

It is well known that =, ={0}" ={a=(a,)", :a, {01} } is a compact metric space

for the metric @ defined by d(x,y) :zm;—m where x = (3, X, X3, Xgpeeeeennns )EZ,,

k
k1

and Yy =V, V5, Vg Vareerreenns )eZX,. Also the shift mapoon X, defined by

Similarly, the spaceX, ={012,...m-1" ={x=(x)7, :x, €{012,.....,m—1}} where
m(>2) e N, the generalised m -symbol sequence space, is a compact metric space
under the distance function d:X xX — R defined by
Xy — Y
d(x,y) = waorxz(xpxz’xs! ------ ) V=01V Vare) €Z,,

k>l
It is to be noted that d is always a metric if we replace m in the definition of d by
any number p>m. Again, it can easily be seen that the shift transformation

o:3x — 3 defined byo(x,x,, x5, %,.0) = (x5, X5,%,,.......) IS continuous. Therefore,
(Z,,0)is clearly a topological dynamical system. One important fact is that for any
m,n(<m) e N, we always havethat 3 <% .

2.9: Themap £, (x)=mx modl and the unit circle S*:
It is a well known fact that for any m(>2)e N,the map £, :[01]—[0]1] s.t.

. : : 1 23 -1 .
f..(x) = mx (modl) is discontinuous at the points —,—,—,....., i e 1. This map
m m m m
is well defined on R/Z =1/~where R/Zis the space of equivalence classes x+ Z

of real numbers x up to integers such that two real numbers x,y belong to the same
equivalence class if an only if d an integer k< Z such that x=y+4 and 7/~

denotes the unit interval with the endpoints identified such that the symbol ~ implies
that O~1 are glued together to get a circle. R/Zis a metric space under the metric

d(x,y)= mizn|x—y+m|.

Also, the unit circle s* = {z e C:|z|=1}={¢*"" :0< 6 <1} is a metric space w.r.t. the

modified arc length distanced defined by d(e”"*,e*"*)=|0,-6] or[1-|6,-6]]
1 1

according as |0, — 6| < 5 or 0, - 6> > S'is a compact metric space and there is a

one-to-one correspondence between R/Zand s*via the map ¥:R/Z — S* given by
P(x) = ™™
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Thus R/ Z is identified with s* via the 1-1 correspondence ¥(x) = ezmx. So, the map
f.(x) on R/Z=1/~ can be defined on s'as f, (z=e"™) =" =(e?™)" =2".
This is a continuous map on S*. Ultimately, (s*, f,) is a topological dynamical
system.

2.10: m-nary expansions and m-adic rationals:
It is well known that every real number x in the unit interval / = [0, 1] has a binary

o0

expansion given as x = Z% where x; e{0,1} which is unique except for the dyadic
i=l

) ) k
rationals, rational numbers of the form 2—nwhere O<k<2"—-1andn e N. In case of

a dyadic rational, we have two different expansions, one ending with an infinite tail of
0’s and the other with an infinite tail of 1’s as the digits of expansion. We have also
similar cases and notions for ternary expansions.

In a similar fashion for those of binary and ternary expansions and dyadic rationals,
for any me N (m>3)and xel=[01], we can talk about m -nary expansions. For

. o X L. i
every x e/, we have an expansion x=2—’i, similar to those of the binary and
=1 M

ternary expansions in structure, where x, €{0.1,2,...,m —1}, which we call an m -nary

. . k . o
expansion. Also, a rational number of the form —-in the unit interval 7 =[01],
m

where 0<k <m”—-1and ne N, may be defined as an m -adic rational. One can
easily verify that every m -adic rational has two different expansions, one ending with
an infinite tail of 0’s in the numerator and the other with an infinite tail of (m—1)* in

o0

. . . . . a.
the numerator, just like dyadic rational numbers. e.g., if x=) —,a, #0,a, =0for
i=1 M

n
. a . _ . .
all k>n, ie, x=) - is an expansion for an m-adic rational, then,
= m
n-1

S,

1
=1 M

-1 ©
L ot Z a—kkf a, =m—1, Vk > n, is the other expansion for x .
m )
3. The Main Results:
1
Theorem: 3.1[The Proximity Theorem]: Let x,yeZX, . Then, d(x,y) < — if
m

and only if xand y agree up to n -digits [i.e. if x = (x;,x,,Xzee2), ¥ =(V1) Vgs Vaseerees)
thenx, = y,for i =1,2,3,......,n]
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Proof: Let x=(x,x,,%5,....), ¥=(,Vs, V3) €Z, and x and y agree up to the
n -digits.

Then, x,— v, = 0for i=123,..... y":o
m'
So, d(x y) Z|xk yk| Z|X y,| z| k yk| _O+Z|xk yk| Z|Xk yk|
k>1 k>n k>n k>n

Now, x=(x,,X,,X3,....), ¥ = (), Vy, Vgyerer) € Zm =x,y,€{0123,.. . m-1L, VieN
=y, —y|<m-1, VieN
|xk_yk| m-1

= 3 , Vk>n
m m*
|xk yk| Sm-1 m-1 &1 m-1 1 _1
d(x’y)_; k —kg& mk mn+l' ;mr - mn+1 ]__—l - m"
m

1 -
Conversely, let, d(x,y) <— . We need to show that x and y agree up to » -digits. If
m

possible, let, x disagrees to y at least at one digit that precedes the n” -digit, say ati”
-digit where 1 <7 < »n—1 and agrees at all other digits up to » -digits. Then,

d(x,y) = Z|Xk Yk| - | yz| Z|xk Yk| |i_'yi|2 i>%,[‘.'i£n—l<n]
m"

m' k=n+1 m' m' m’

: . . 1 : :
This contradicts our assumption that d(x,y) <—-. Further, if x disagrees to y at
m

more than one digit for 1<i<»n—1, then also proceeding as above we get
contradictions. So, it follows that x and y must agree up to » -digit. [

Theorem: 3. 2: The shiftmap o:X, — X istopologically transitive.

Proof: To establish that the shift map o is topologically transitive, by proposition2.5,
we need to show that for any two non-empty open setsU and y of X, there exists
n e Nsuch that o"(U)NV = ¢.

Let x=(x,, X, X3ee.) €U and y =(yy,¥,, Vs,.rr.) €V be arbitrary (since U and y are
non-empty open sets, so we always have such points).

Now, xeU, yevand U,V are open sets. So, d open balls B(x,)cU and

By, V. If r=min{s,r},then B(x,r)cUand B(y,r)cV. We choose

1 . .
ne Nsuch that — <r . Consider the pointz = (x;,x,,X,.cccry X, V1s Vp, Vayernnr) €
m

which agrees with x up to the»” term. Therefore, by Proximity Theorem, we have
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1
that d(x,z) < —<r =zeB(x,r)cU and consequently it follows that
m

o"(z) ea"(U).
AlSO, 6" (2) = (Vs Vor Vareewww) =y eV, y=0"(2) ec"(U) = y=0"(z) e " (U)W
So, it follows thats” (U)NV # ¢ and hence o:%, — X, is topologically transitive.m

Theorem: 3.3: The shift map o:% — X is topologically mixing.

Proof: Let U and ¥ be any two non-empty open sets in £ . We show that there
exists a non-negative integer ng such that o"(U)NV # ¢., Vn2>n,.

Let x=(x,x,,X3,.....) €U and y =(yy, V5, Vs,.-..) €V be arbitrary (since U and v
are non-empty, so we must have such points in U and 7 ). Then, since, xeU, yeV
andU, v are open setsin £, , d open balls B(x,r), B(y,r,) such that B(x,r) cU
and B(y,n,) V. If r=min{y,r} then B(x,r)cU, B(y,r)<Vand we can

1 o
choose k e N such that —- <r. We then construct a sequence { z, }of points in X
m

with the help of £, x and y such that

2y = (X1 Xp0 X, Xy Xy Y11 Vo Vs Ygrevrsseee )

Zy = (%, Xy, Xgy Xgeeeeee Xy A1y Vi Voo Vay Vieerens)

Zy = (X0, Xy, X3, Xgeeren Xy, Ay y Aoy Vi Vs Vay Vagerenen) 5 weneenenn ,

Z, = (X0, Xy Xgyerens Xpy Gy A gy Ay 1y Viy Voo Varennn) s £ 2 2, all.s €{012,....m-1}
Here, everyz,,i > 2, is constructed by using the finite word obtained by taking first
(i—1)consecutive symbols of a fixed sequencea=(a,,a,,a;,a,,..cc., @, 4,..) €
chosen arbitrarily. More precisely, the first « letters of z,, for each i > 2, is the finite
word ;3 = (o, %, X3, X peveennene ,x,) taken from xetUand then follows the word
ay g =(ay,a5,a3,a,,......, a, ;) taken from a and at last the sequence representing y i.e.

z; = (X490 @ ¥)- I this case we can also use a fixed letter from the alphabet set
{01,2,...., m—1}yrepeating it for (i —1)times rather than using a;  ,,.

Now, by using the Proximity Theorem, we clearly have,
1 -
d(x,z;) < —<r [wxandz, agree up to the k”-digits], for all ienN. So,
m
z, € B(x,r) cU and hence o*"(z,) e 6" (B(x,7)) c " (U) forall i e N.
Also, 6" (z,) = (1), Vs Varws) €V, 6574 (z,) € H(U) imply that o*H(U) NV = ¢,
forall i >2. Therefore, c"(U)NV =¢ ,forall n>k.
Hence, the shift map o:X, — X istopologically mixing. n
° We recall that a topological dynamical system f:x — X onacompact metric
space (Xx,d) is said to exhibit sensitive dependence on initial
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conditions(shortly SDIC) if 4 & >0, called the sensitivity constant, such that
for any x e X and for any neighbourhood ~(x) of x, d a point ye N(x) and

a non-negative integer » such that d(f/"(x), /" (y))= &

Theorem:3.4: The shift mapo:X, — X has sensitive dependence on initial
conditions.

Proof: Let x e X be arbitrary and N(x) be an arbitrary neighbourhood of x . Then,
by definition of a neighbourhood, there exists a non-empty open set G such that
xeGc N(x). Now, xeG, G is open inX, = H an open ball B(x,r) such that

B(x,r)cGc N(x). Let yeB(x,r)cG< N(x)such that x=y and x is very
close to y .This is always possible to have a very close point to x, because we can

o1 .
choose a k£ € N as large as we want satisfying —-<r and for this large £ e N we can
m
construct the point y in such a way that this agrees with x up to % -digits. Then
1 :
d(x,y) <—-<rand hence for large value of %, x will be too close to y .
m

Let d(x,y)=¢.Then, since x is very close toyand ¢ is very small, so, depending on

. 1 1 :
the value of £>0, 3 a large and unique neNs. t.—; <& <—. Consider
m m

d(x,y)zgsi”
m

1 ..
Then,d(x,y) <— = x and y agree up to the »n” digit
m

= (n+1)" digits of x and y are different
= The first digit of 6" (x) and o" () are different

=d(c"(x),0"(y)) = i Sl i

m
. 1 o
Here, from the above relation it is clear that — plays the role of sensitivity constant
m

d.
Thus for every xeX, and any neighbourhood N(x)of x, Hye N(x) and n>0

‘xn+i - yn+i

ml

Xt _'yn-#i > l
m' m

1
satisfying d(c"(x),c"(y)) =6 for 6 =—.
m

Hence the shift transformation o:X, — X has sensitive dependence on initial
conditions. ]

Theorem:3.5: The set P(c), the set of all the periodic points of the shift map o, is
densein X .
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Proof: We first show thato has m” —m periodic points of period-»in =, for n>2.
It is to be noted that if a definite block of » -digits from the set {0,1,2,34,......., m -1}
repeats indefinitely, then it is a periodic point of o of period-» in . A block of » -

digits can be formed with the m distinct digits 0, 1, 2, 3, ...... , m—1In m"-ways.
These blocks contains the m -blocks formed by the same digit (e.g. 000000..0,
11111...1, 222222...2 etc.) which are not periodic points of period-» . These are, in
fact, periodic points of period-1 i.e. fixed points. So, we have only (m" —m)numbers
of periodic points of period-#nin X .

Consider an arbitrary point x € £ . We show that for any >0, however small,
there is a point p e P(o) such that d(x, p) < e .Let x=(x,x,,x;,.....). For the fixed

: L 1
small £ >0, we can always find a positive integer » e N such that —<¢.
m

Now, we construct a periodic point p e P(c) of period (» +1) such that

P = (3, X5, Xgpeeeey X,y Vs Xpy Xy Xgyevenns X,y Yy Xpy Xy Xgyevnrnny X,y Vyerrnens)

I.e. p is constructed by repeating the word W = (x;, x,, X,,...., X,,, ») infinite number of
times so that it agrees with the digits of x up to »-terms and disagrees at (n+1)"

- 1
digit such thatx,,, = y andd(x, p)<—<e¢.
m

n+l

Thus, for every x € £ ande>0, 3 p e P(c)such that d(x, p) <¢. That is, however
small &> 0may be, for anyx € £ there is always a point » € P(c) which is at a
distance less than the arbitrarily small quantity > 0. Hence the set P(c)is dense.m

Theorem3.6: The shift mapo on X is Devaney as well as Auslander-Yorke chaotic.

Proof: We have already proved in the Theorems 3.2, 3.4 and 3.5 that(i)o is
topologically transitive, (ii) it has sensitive dependence on initial conditions and (iii)
the set P(o) of all the periodic points of o is dense in X .Thatis, o satisfies all the
requirements for Devaney as well as Auslander-Yorke chaoticity. So, it is Devaney as
well as Auslander-Yorke chaotic. [

Theorem3.7: The shiftmapo on X, is generically 5 -chaotic with § = diam(X,) =1.

Proof: In Theorem3.3, we have established that the shift transformation o on X is
topologically mixing. Since by Proposition2.6, a continuous topologically mixing
map on a compact metric space is also topologically weak mixing, so, the shift
transformation o being a continuous topologically mixing map on the compact metric
space X, is topologically weak mixing.
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Also, by Proposition 2.7, a continuous topologically weak mixing map on a compact
metric space X is generically §-chaotic on X with & =diam(X) . So, it follows that

the shift transformation o on X is generically & -chaotic with & =diam(X,)=1.m
° We remember that a dynamical system (x, r)is modified weakly chaotic

dependence on initial conditions if for any x < X and every neighbourhood
N(Xx) of x, there are y,ze N(Xx) [in modified weakly case y = x, z# x]

such that (y,z) € X?is Li-Yorke.

Theorem: 3.8: The Topological Dynamical System (=
chaotic dependence on initial conditions.

o) has modified weakly

m!

Proof: Letx = (x;,X,, X;yeerees X,y eeene ) € 2, be any point and N(x) be any neighbourhood
of x. Then there exists an open set(open neighbourhood) U of X  such that
xeUc N(x).

Now, since xeU and U is an open set, so, there exists an open ball B(x,7 ) with
some radius » >0 such that B(x,»)cU < N(x). Then for this » >0, we can

- o 1 :
choose a sufficiently large positive integer n such that — <. We now find two
m

points y,z € B(x,7) cU < N(x) with y s x, z = x such that the pair (y,z) € £’ is

Li-Yorke. Before this we define some terms and notations which will help us to
simplify our proof.
By a word in £ we mean a finite sequence of digits, called letters, from the set

{01,2,3,......., m —1} . Words are denoted by 4, B,C,....., P, O, R,..... etc. If the words 4

letters in  x=(x,,%,,Xg,enee X,

W(x,5n), W(x,7Tn), ....... etc. as follows:
W(x,3n) = (x;nﬂ, X,y preeeennen neneens s Xy X1 Xy g vesesneses weesnenen on y Xg,, ),
W(x,5n) = (00,111 Xy gseereeeee wereenen S VX, ),
W(x,7n) = (X5, 1,0 rereereee e s X Xy 112 Xigy g 9eeereses weneneen , Xg, ), -~ and so on.

Note that each of the above words contains 2z letters, firstn of which are them -nary
complements of the letters in the corresponding places of x and the rest n letters are
just the letters in the corresponding places of x. In all the above words
x, =(m-1)—x,Vk.

NOW taKE 3 = (X, Xy yevereey X,y s X105 Xy seeenenes Xapys Xayigs Xyrzreeseees Xy s Xiyyrg s Xigyyp eeeeenes )

and z = (o, X5 e X, (0", (0)", W (x,3n),W (x,5n), W (x,7n),W (x,9n),....... )
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where (0°)" =07,0",0",....,0",(0)" =0,0,0,....0 and 0" = (m—-1)—0=m—1
n—terms n—terms

With these and the Proximity theorem for X, we now prove the theorem as follows:
Since y and z agree with x up to the n” term, so, by Proximity theorem, we have,

1 1
d(x,y)<—<r, d(x,z) <— <rand consequently y,z € B(x,r ) cU < N(x)
m m

Here, z contains infinitely many words of the typeW (x,(2k—-1)n), where
k(= 2) e N, containing 2 letters each.

Also, &% (1) = (X310 Xgpypreneenes v Xap s Xapi10 Xgpipveeeess 1 X503 X510 Xgpqpeeeees )
o™ (2) = (x;n+1’ x;n+2’ ------- ' XZn 1 X i1y Xy eeeeeees 1 X5, x;n+1’ x;mz ------ )
o (1) = (X421 Xy 1eeneene v X1 Xy 10 X ppeeeeness 1+ X1 Xppi1s Xopgoreeeer )
TV (2) = (X411 Xsgppipreeeene s X, Xayigs Xay g eseseens s X, s Xgpigs Xgpageeereeen )

Therefore, supd(c”(y),0"(2)) > d(c> (y),c0% (z)) and so

n n 3n 3n < ‘x3n+r _x;n+r
Lt supd(c"(y),0"(2))> Lt d(o™"(y),07"(2)) > Lt Z—r
n—w n—»w n—oo “T m

1
2Lt{£+i+ + 1}:—
m

Again,
0< Lt infd(a"(y),0"(2))
< Lt d(c¥(y),6"(2))

< néfw A( (Xg100 Xos X100 Xs Xgprar)s (Xgpszrees X X rees Xes Xopanrer))

m-1 m-1 m-—1 m-1 m-1 m-—1
= Lt n+l + n+2 Tt 2n + 3n+l + 3n+2 Tt 4n T
n—w m m m m m m
= Lt {Ll— 1n J 1n (1+ 12n + J;n + Jén .......... J}
n—>0 m m m m m

— It (1— 1nj,i, 11 =(1-0).0.Lﬁ} =0

n—0 m mn 1_7

m2n

Now, 0< Lz inf d(c”(y),0"(2)) <0= Lt inf d(c"(y),5"(2)) =0
1

m —

Thus Lt supd(c”(y),0"(2)) = 1 and ];t infd(o"(y),0"(z))=0
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1
Hence, (y,z) € X’ is a Li-Yorke pair with modulus & =—— >0 .Consequently, the

m_
dynamical system (X , o) has modified weakly chaotic dependence on initial
conditions. -
° We recall that a dynamical system (.x, r) is said to have chaotic dependence

on initial conditions if for any x e X and every neighbourhood ~(x)of x,
there isa y e N(x) such that the pair (x,y) e X”is Li-Yorke.

Theorem:3.9: The dynamical system (X , o) has chaotic dependence on initial
conditions.

Proof: Let, a=(a,a,,a,...)<cX, be an arbitrary point and N(a) be any
neighbourhood of a. Then there exists an open set(open neighbourhood) U of %
such that aeU < N(a).

Now, since ¢ cU and U is an open set, so, there exists an open ball B(a,r) with

some radius » >0 s. t.B(a,r)cU < N(a). Then, for this » >0, we can choose a

sufficiently large positive integer »n such that — <r. We now find a point
m

be B(a,r)cU < N(a) such that the pair (a,b) € £° is Li-Yorke. Here, also we use

the similar terms and notations as in Theorem.3.8 to simplify our proof.
Using the letters in a =(a,,a,,a;,......a,,...... )eX ,as in Theorem 3.8, we define the

words W (a,3n), W(a,5n), W(a,7n), ....... etc. as follows:

W (@,31) = (g, 15 Aoy seereenen weeenees s Qg Qg Qgpyigseeseenens seeneneene s, )

W (@,51) = (g,y15 Aayagyereeeens weseenne Qs Agpigs Agpag veneeeens weneeeens ),

W (a,Tn) = (5,1, Ay preeeenens weneeees A P P ,dg, ), --.. and so on.
Now, using the above defined words we construct the point 5 as follows:

b=(a,ay,..... ,a,, (0*)" ,(0)", W (a,3n),W(a,5n),W(a,7n),W(a,9n),...cc.c..c..... )
where (0)" =0",0",0,...,0°,(0)" =0,0,0,.....0 and 0" = (m-1)-0=m -1

n—terms n—terms

From the construction of 5 it is clear that » agrees with a up to the n” term. So, by
Proximity theorem, we have,

d(a,b)gin<rand hence, b€ B(a,r)cU < N(a)
m

Here, we see that » contains infinitely many words of the type W(a,(2k—-1n),
containing 2» letters each, where 4 > 2 is an integer.

Also, 6> (b) = (az,.1, gyipreeeenees Vs Qg Qg seeeenes T P AP |

ANd - % (B) = (ay,0) Aapyzreeeeee | sy, gy Ay e Y Y — )

Therefore, supd(c”(a),c” (b)) > d (o™ (a),c> (b)) and so
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n_o|a —a*
Lt supd(c”(a),c" (b)) = Lt d(c* (a),0>" (b)) > Lt 2‘3—3
n—w n—ow n—o )

m

1 1 1 1
> Lt {—+—2+ ..... + n}:—
o (m m m m-—1
Again, 0< Lt inf d(o"(a),0” (b))
< Lt d(c"(a),c" (b))

= Lt d((Ay, 1o sy Aoyyayeves Qs Agppgres)s (@apigrees Aoy By g veens gy Qg eens)

n—>0
m— 1 m—1 m—1
m3n+1 2 +to.+ pRD o

m-1 m-— 1 m
< Lt n+l + n+2 ) +
n—»00 m m
m-1 m-— 1 m 1 1
=Lt —+ 3,1 L F e
n—>0 m m m

1)1 1
= Lt<{|1-— | 1+ +—
naoo{( an mn [ mZn m4n mGn J}
2n

1 1 1
= Lt<|1- . =(1-0).0, — |=0
Hw( mj T [~ )(1—oj
m

n 1_7
Now, 0< Ltinfd(c"(a),c"(b))<0= Ltinfd(c"(a),c"(b))=0
1 .
So, it follows that Lt Supd(c”(a),c" (b)) > - and Lt inf d(c"(a),c"(b))=0
n—»0 n m— n—»0 n

. o 1
Hence, (a,b)€X’is a Li-Yorke pair with modulus & =——>0. Therefore, the
m_

dynamical system (X, , o) has chaotic dependence on initial conditions. [

4. Topological Conjugacy and Semi-Conjugacy:

Topological conjugacy between maps is a very powerful tool in the study of
dynamical systems. This is due to the fact that most of the dynamical properties of a
system are retained under topological conjugation. So, by studying the dynamical
properties of a system, we can comment on the dynamical properties of other systems
which are topologically conjugate to the first system.

In this section we discuss a little bit about this by defining the terms topological
conjugacy and semi-conjugacy between two maps.

Let /: X —> x and g:Y — Y be two continuous maps on the metric spaces X andy. If

there exists a homeomorphism #4: X — Y such thatzof = goh, then f'is said to be
topologically conjugate to the map g . In this case, 4 is called a topological conjugacy
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[13].0On the other hand, if for the continuous maps f:x — xand g:¥Y — 7Y, there
exists a surjections: X —ysuch that iof =goh, then f is topologically semi-
conjugate 10 g.

The following results related to topological conjugacy are stated (without proof) as
they are applied in some subsequent theorems.

Proposition 4.1: If the TDS f:x — x is topologically conjugate to the TDS

g:Y — Y by the conjugacy map #: X — Y, then,

Q) / is topologically transitive(resp., mixing/weakly mixing/exact/minimal) iff
g is topologically transitive (resp., mixing/weakly mixing/exact/minimal).[13]

(i) f is DevC (resp. EDevC, MDevC, WMDevC) if and only if g is DevC (resp.
EDevC, MDevC, WMDevC)[13]

Proposition 4.2: If the TDS 7 : x — x is topologically semi-conjugated to the TDS
g:Y — 7 then, f istopologically transitive(resp., mixing) implies g is topologically
transitive(resp., mixing).

Theorem: 4.3: The shift map o:%X, —» X, and the map f,,:R/Z — R/Z such that
f..(x) = mx (modl) are topologically semi-conjugated.

o0

Proof: Consider the map w:%, — R/Z =1I/~such that y(x,x,,x5....) = Z—
=1 M

: , : v x _em-l :
This map is well defined, because the series Zx—l < Zm—l = 1is convergent. We

=1 M = m
show that this mapping is a topological semi-conjugacy between o:X — 3% and
f.:RIZ—>RIZ.
i) w is surjective: Since, every real number xe7=[01] has an m-nary

i=1
digits in the m -nary expansion for x will form the sequence x = (x, x,, X5,......).
As x, €{0123,....... ,m—1}, clearly, xeX . Also, by the definition of v,

- o X, . .
w (x)= > == = x. Hence, v is surjective.
=1 M

i) yoo =/, oy

For any x = (x;, Xy, Xgyeee et yeX, , we have, o(X)=(x,,X;5 X )eX and

m!

0

(o0 ) ()= P(EE) = Y055 ) = D02

i=1
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Also, we have, ( £, o )(x) = £, (v (x)) = mi%): m(i%)(modl)

=[x+ Y~ ](modd)
=1 M

=Y = (yoo)(x), Vael,

=1 m

Hence, we can conclude thaty oo = f, oy .

Thus w:X — R/Z=1I/~is asemi-conjugacy between o and £, . [

Remark: Since, the pre-image of every m -adic rational number in R/Z=1/~1is a
set of two distinct sequences in T, one with a tail of 0 and the other with a tail of
(m—1)*, so, w is not injective. Hence, by restricting the domain ofy , we make y
injective and thereby make it a conjugacy between o and £, . For this we define the

following space.
The Symbol Space X /~: The space X /~is the symbol space with the

equivalence relation ‘~’ in X  defined as follows:

x ~ yiff JkenNstx,=y,Vi<kand x, =m-1y, =0,x,=0,y, =m-1 Vi<k
where X = (X, Xy, Xgyeeees X, yeen)y ¥ = (V1 Vs Vareronoy Vyproer) €2,

We observe that the sequences identified as above are sequences with tails of 0’s and
(m-1)’s which correspond to two possible choices of m -nary digits for an m -adic

rational number.
With these considerations in mind we have the following theorem:

Theorem: 4.4: The shift map o:X, /~—X /~and the map f, (x) = mx (modl) on
the space R/zare conjugated by the mapping o:% /~— R/Zdefined by

0

Proof: With the same lines as in Theorem 4.3, we can establish that (i) y is surjective

and (i) y oo = £, oy .
Now, since, every m -adic rational number in [0, 1] is the image of two particular
sequences in £ which are equivalent in £ /~, so, every m -adic rational has one

and only one pre-image. Also, since, every non-m -adic rational has only one pre-
image in X/~ (. every non-m -adic rational has unique m-nary expansion), so, it
immediately follows that v is 1-1.

Therefore, y is a topological conjugacy between o and f,,. [

Theorem: 4.5: The map f,,(x) = mx modl on R/Z is Devaney chaotic.
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Proof: We have already established that the shift map o:X /~—X [/ ~is Devaney
chaotic and is topologically conjugate to the map £, (x)=mx (modl) on R/Z.
Since, Devaney chaoticity retains under topological conjugacy, so, the map
f.,(x) = mx (modl) on R/Z must be Devaney chaotic.

|

Theorem: 4.6: The shiftmap o:%, — X IS exact Devaney chaotic, i.e. EDevC.

Proof: Let us first prove that the map o:%, — %, is exact.
For this, let U be any non-empty open set in £ . We now prove that there is an

integer k€ N suchthata*(U) =%, .

Since U is non-empty, so there exists at least one element x e U.Again, since U is
openin ¥ ,so, for x e U, there must exists an open ball B(x,r)such that B(x,r) cU.

1
Then we can choose some k< N such that <r. If we put —=r, then
m

L
mk

1
1, =— <rand hence clearly B(x,r) < B(x,r) cU.
m

1
Then, for every y € B(x, 1) , we always have thatd (x, y) <n =—.
m

From this it immediately follows that x and y agree at least up to the " term. Also
after k" term all the sequences in Z, may be tails of y. That is, B(x,) contains all
the points whose first k digits agree with x and the tails are all the sequences of X,.
Hence the k" iterates of all these points in B(x,r) constitute the space X, . i.e.
o (B(x,n))=2,,.
Also, B(x,r,) cU = c*(B(x,r)) < ¢* (U)

=3, co'(U)

=3 =c'(U) ,[Z, 20 U)]

Since, U is an arbitrary non-empty open set of £, , so, the result £, = ¢*(U) s true

for every non-empty open setU of X . Therefore, o is an exact map onZ,, .

In Theorem3.6, we have proved that o is Devaney chaotic. So, it follows that o is
exact Devaney chaotic (EDevC). [

Remark: As o is exact Devaney chaotic(EDevC), therefore, it is also MDevC
and WMDevC.
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5.Conclusion:

In this paper we have extended some results of the shift transformation on X, to %,
and further we have proved some new results by applying the properties of
topological conjugacy. To derive most of the results we have fruitfully applied the
Proximity theorem and metric space properties. In Theorem3.8 and Theorem 3.9 we
have proved that the shift map is modified weakly chaotic dependence on initial
conditions and chaotic dependence on initial conditions respectively in a more
explanatory way. Construction of Li-Yorke pairs have been done in these theorems in
a clear-cut way. In Theorem: 4.4, it has been established that the shift map on X/~ is
topologically conjugated to the map f,,(x) = mx modl on R/Z and by retentivity of
Devaney chaos under topological conjugation, we have concluded in Theorem: 4.5
that f,,(x) = mx modl on R/Z is Devaney chaotic (DevC). Theorem: 4.6 establishes
that the shift transformation is exact Devaney chaotic(EDevC) which is a more
stronger condition on metric spaces as EDevC = >MDevC = >WMDevC = >DevC.
Most of the results are quite interesting and have profound applications in advanced
analysis and discrete mathematics.
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