On Soft Almost πg -continuous functions

*A. Selvi and **I. Arockiarani

^{*}Department of Mathematics, Providence College for Women, Coonoor, India. ^{**}Department of Mathematics, Nirmala College for Women, Coimbatore, India.

Abstract

The object of this paper is to introduce a new class of functions called soft almost π g-continuous functions. This class turns out to be the natural tool for studying different class of soft compact spaces. Further soft almost π g-open and soft almost π g-closed functions are obtained as generalizations of soft open and soft closed functions respectively.

Keywords: soft π g-closed set, soft π g-open set, soft π g-Continuity, soft almost π g-continuity, soft almost open π g-continuity, soft almost closed π g-continuity

1. Introduction

Molodtsov [8] initiated the concept of soft set theory as a new mathematical tool and presented the fundamental results of the soft sets. Recently Muhammad Shabir and Munazza Naz [10] introduced soft topological spaces which are defined over an initial universe with a fixed set of parameters. Kharal et al. [5] introduced soft function over classes of soft sets. Cigdem Gunduz Aras et al., [1] in 2013 studied and discussed the properties of Soft continuous mappings. In this paper, we give some characterizations of soft almost π g-continuous function and the relations of such function with other types of soft functions are obtained.

2. Preliminaries Definition: 2.1[8]

Let U be the initial universe and P(U) denote the power set of U. Let E denote the set of all parameters. Let A be a non-empty subset of E. A pair (F, A) is called a soft set over U, where F is a mapping given by F: $A \rightarrow P$ (U).

Definition: 2.2[7]

A subset (A, E) of a topological space X is called soft generalized-closed (soft gclosed) if $cl(A, E) \cong (U, E)$ whenever (A, E) $\cong (U, E)$ and (U, E) is soft open in X.

Definition: 2.3[2]

A subset (A, E) of a topological space X is called soft regular closed, if cl(int(A, E))=(A, E). The complement of soft regular closed set is soft regular open set.

Definition: 2.4[2]

The finite union of soft regular open sets is said to be soft π -open. The complement of soft π -open is said to be soft π -closed.

Definition: 2.5[2]

A subset (A, E) of a topological space X is called soft πg -closed in a soft topological space (X, τ , E), if cl(A, E) \cong (U, E) whenever (A, E) \cong (U, E) and (U, E) is soft π -open in X.

Definition: 2.6[1]

Let (F, E) be a soft set over X. The soft set (F, E) is called soft point, denoted by (x_e, E) , if for element $e \in E$, $F(e) = \{x\}$ and $F(e') = \emptyset$ for all $e' \in E - \{e\}$.

Definition: 2.7[12]

Let (X, τ, E) and (Y, τ', E) be two topological spaces. A function f: $(X, \tau, E) \rightarrow$ (Y, τ', E) is said to be Soft Semi continuous(Soft pre-continuous, Soft α -continuous, Soft β -continuous), if $f^{-1}(G, E)$ is soft semi open(soft pre-open, soft α -open, soft β open) in (X, τ, E) for every soft open set (G, E) of (Y, τ', E) .

Definition: 2.8[3]

Let (X, τ, E) and (Y, τ', E) be two topological spaces. A function f: $(X, \tau, E) \rightarrow$ (Y, τ', E) is said to be Soft regular continuous(Soft π -continuous, Soft g-continuous, Soft π g-continuous), if $f^{-1}(G, E)$ is soft regular open(soft π -open, soft g-open, soft π g-open) in (X, τ, E) for every soft open set (G, E) of (Y, τ', E) .

Definition: 2.9[3]

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is soft πg -irresolute, if $f^{-1}(G, E)$ is soft πg -open in (X, τ, E) for every soft πg -open set (G, E) of (Y, τ', E) .

Definition: 2.10[2]

A space (X, τ , E) is called soft π g-T_{1/2} [6], if every soft π g-closed set is soft closed, or equivalently every soft π g-open set is soft open.

Definition: 2.11[3]

A function f: (X, τ , E) \rightarrow (Y, τ' , E) is called $\tilde{S}\pi$ g-open, if image of each soft open set in X is $\tilde{S}\pi$ g-open in Y.

Definition: 2.12[4]

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is called soft contra π g-continuous, if $f^{-1}(F, E)$ is soft π g-closed in X for every soft open set (F, E) of Y.

Definition: 2.13[4]

A space (X, τ , E) is said to be soft π g-compact, if every soft π g-open cover of X has a finite sub cover.

Definition: 2.14[4]

A space (X, τ, E) is said to be soft countably πg -compact, if every soft πg -open countably cover of X has a finite subcover.

Definition: 2.15[4]

A space (X, τ, E) is said to be soft πg -Lindel $\ddot{o}f$, if every soft πg -open cover of X has a countable subcover.

Definition: 2.16[4]

A space (X, τ , E) is called soft π g-connected provided that X cannot be written as the union of two disjoint non-empty soft π g-open sets.

Definition: 2.17[4]

A space (X, τ, E) is said to be $\tilde{S}\pi g$ -T₂ if for each pair of distinct soft points *x* and *y* in X, there exist $(F, E) \in \tilde{S}\pi GO(X, x)$ and $(G, E) \in \tilde{S}\pi GO(X, y)$ such that $(F, E) \cap (G, E) = \emptyset$.

Definition: 2.18[10]

A space (X, τ, E) is said to be soft Hausdorff, if for each pair of distinct points x and y in X, there exists soft open sets (A, E) and (B, E) containing x and y such that (A, E) \cap (B, E) = \emptyset .

Definition: 2.19[4]

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is said to be soft R-Map, if $f^{-1}(A, E)$ is soft regular closed in X for every soft regular closed (A, E) of Y.

Definition: 2.20[4]

A space (X, τ, E) is said to be soft submaximal, if each soft dense subset of X is soft open.

3. Soft Almost π g-continuous functions Definition: 3.1

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is said to be soft almost π g-continuous, if $f^{-1}(A, E)$ is soft π g-open in X for every soft regular open (A, E) of Y.

Theorem: 3.2

The following statements are equivalent for a function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$

- f is soft almost π g-continuous. 1.
- 2. $f^{-1}(F, E) \in \tilde{s}\pi GC(X)$ for every soft $(F, E) \in \tilde{s}RC(Y)$.
- For each $x \in X$ and each soft regular closed set (F. E) in Y containing f(x). 3. there exists soft π g-closed set (U, E) in X containing x such that f(U, E) $\widetilde{\subset}$ (F, E).
- 4. For each $x \in X$ and each soft regular open set (F, E) in Y containing f(x), there exists soft π g-open set (K, E) in X not containing x such that $f^{-1}(F, E) \cong (K, E)$ E).
- $f^{-1}(int(cl(G, E))) \in \tilde{s}\pi GO(X)$ for every soft open subset (G, E) of Y. 5.
- $f^{-1}(cl(int(F, E))) \in \tilde{s}\pi GC(X)$ for every soft closed subset (F, E) Of Y. 6.

Proof:

 $(1) \Rightarrow (2)$

Let $(F, E) \in \tilde{s}RC(Y)$. Then $Y (F, E) \in \tilde{s}RO(Y)$ By (1) $f^{-1}(Y (F, E)) = X f^{-1}(F, E)$ E) $\in \tilde{s}\pi GO(X)$. Thus $f^{-1}(A, E) \in \tilde{s}\pi GC(X)$.

 $(2) \Rightarrow (3)$

Let (F, E) be a soft regular closed set in Y containing f(x). Then $f^{-1}(F, E) \in$ $\tilde{s}\pi GC(X)$ and $x \in f^{-1}(F, E)$ by (2). Take $(U, E) = f^{-1}(F, E)$. Then $f(U, E) \cong (F, E)$. $(3) \Longrightarrow (2)$

Let (F, E) \in $\tilde{s}RC(Y)$ and $x \in f^{-1}(F, E)$. From (3) there exists a soft πg -closed set (U, E) in X containing x such that $f(U, E) \cong (F, E)$. We have $f^{-1}(F, E) = \bigcup \{(U, E):$ $x \in f^{-1}(F, E)$. Thus $f^{-1}(F, E)$ is soft π g-closed set.

 $(3) \Rightarrow (4)$

Let (F, E) be a soft regular open set in Y not containing f(x). Then Y (F, E) is soft regular closed set containing f(x). By (3) there exists a soft π g-closed set (U, E) in X containing x such that f (U, E) \cong Y\ (F, E). Hence (U, E) \cong f^{-1} (Y\ (F, E)) \cong X\ f^{-1} (F, E). Then $f^{-1}(F, E) \cong X \setminus (U, E)$. Take $(K, E) = X \setminus (U, E)$. Then we obtain a soft π g-open set (K, E) in X not containing x such that $f^{-1}(F, E) \cong (K, E)$. $(4) \Rightarrow (3)$

Let (F, E) be a soft regular closed set in Y containing f(x). then Y\(F, E) is a soft regular open set in Y not containing f(x). By (4) there exists a soft π g-open set (K, E) in X not containing x such that $f^{-1}(Y \setminus (F, E)) \cong (K, E)$. That is $X \setminus f^{-1}(F, E) \cong (K, E)$ implies X\ (K, E) $\subset f^{-1}$ (F, E). Hence f(X\ (K, E)) \subset (F, E). Take (U, E) = X\ (K, E). Then (U, E) is soft π g-closed set in X containing x such that f(U, E) $\widetilde{\subset}$ (F, E). $(1) \Rightarrow (5)$

Let (G, E) be a soft open subset of Y. Since int(cl(G, E)) is soft regular open then by (1) $f^{-1}(\operatorname{int}(\operatorname{cl}(G, E))) \in \tilde{s}\pi \operatorname{GO}(X)$.

$$(5) \Longrightarrow (1)$$

Let $(G, E) \in \tilde{s}RO(Y)$. Then (G, E) is open in Y. BY (5) $f^{-1}(int(cl(G, E))) \in \tilde{s}\pi GO(X)$ implies $f^{-1}(G, E) \in \tilde{s}\pi GO(X)$. Hence f is soft almost πg -continuous.

(2) \Leftrightarrow (6) is similar as (1) \Leftrightarrow (5).

Theorem: 3.3

If f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is a soft almost π g-continuous function then the following properties hold:

- 1. $\tilde{s}\pi g-cl(f^{-1}(cl(int(cl(B, E)))) \cong f^{-1}(cl(B, E))$ for every soft subset (B, E) of Y.
- 2. $\tilde{s}\pi g$ -cl($f^{-1}(cl(int(F, E)))) \cong f^{-1}(F, E)$ for every soft closed set (F, E) of Y.
- 3. $\tilde{s}\pi g-cl(f^{-1}(cl(V, E))) \cong f^{-1}(cl(V, E))$ for every soft open set (V, E) of Y.

Theorem: 3.4

Every restriction of a soft almost π g-continuous function is soft almost π g-continuous.

Proof:

Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ be a soft almost π g-continuous function of X into Y and (A, E) be any soft open subset of X. For any soft regular open subset (F, E) of Y, $(f|(A, E))^{-1}(F, E) = (A, E) \cap f^{-1}(F, E)$. Since f is almost π g-continuous $f^{-1}(F, E) \in \tilde{s}\pi$ GO(X).Hence (A, E) $\cap f^{-1}(F, E)$ relatively soft π g-open subset of (A, E). That is $(f|(A, E))^{-1}(F, E)$ is soft π g-open subset of (A, E). Hence f|(A, E) is soft almost π g-continuous.

Theorem: 3.5

If f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is a soft function of X into Y and $X = (A, E) \cup (B, E)$ where (A, E) and (B, E) are soft πg -closed and f|(A, E) and f|(B, E) are soft almost πg -continuous, then f is soft almost πg -continuous.

Proof:

Let (F, E) be any soft regular closed set of Y. Since f|(A, E) and f|(B, E) are soft almost πg -continuous, $(f|(A, E))^{-1}(F, E)$ and $(f|(B, E))^{-1}(F, E)$ are soft πg -closed in (A, E) and (B, E) respectively. Since (A, E) and (B, E) are soft πg -closed subsets of X, $(f|(A,E))^{-1}(F, E)$ and $(f|(B,E))^{-1}(F, E)$ are soft πg -closed subsets of X. Also $f^{-1}(F, E) = (f|(A,E))^{-1}(F, E) \cup (f|(B,E))^{-1}(F, E)$ is soft πg -closed in X. Hence f is soft almost πg -continuous.

Theorem: 3.6

If f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is a soft function of X into Y and $X = (A, E) \cup (B, E)$ and f|(A, E) and f|(B, E) are both soft almost π g-continuous at a point x belonging to (A, E) $\cap (B, E)$, then f is soft almost π g-continuous at x.

Proof:

Let (U, E) be any soft regular open set containing f(x). Since $x \in (A, E) \cap (B, E)$ and f|(A, E), f|(B, E) are both soft almost πg -continuous at x, therefore there exist soft πg -open sets (F, E) and (G, E) such that $x \in (A, E) \cap (F, E)$ and $f((A, E) \cap (F, E)) \cong (U, E)$ and $x \in (B, E) \cap (G, E)$ and $f((B, E) \cap (G, E)) \cong (U, E)$.Since $X = (A, E) \cup (B, E)$, $f((A, E) \cap (B, E)) = f((A, E) \cap (F, E) \cap (G, E)) \cup f(B, E) \cap (F, E) \cap (G, E)) \cong f((A, E) \cap (G, E)) \cong f((A, E) \cap (G, E)) \cong (U, E)$.Thus $(F, E) \cap (G, E) = (K, E)$ is a soft πg -

open set containing x such that $f(K, E) \cong (U, E)$. Hence f is soft almost π g-continuous at x.

Theorem: 3.7

If a function f: $X \to \prod Y_i$ is soft almost πg -continuous, then $P_i \circ f$: $X \to Y_i$ is soft almost πg -continuous for each $i \in I$, where P_i is the projection of $\prod Y_i$ onto Y_i .

Proof:

Let (V_i, E) be any soft regular open set of Y_i . Since P_i is a soft continuous open, it is a soft R-map. Hence $P_i^{-1}(V_i, E)$ is soft regular open in $\prod Y_i$. Thus $(P_i \circ f)^{-1}(V_i, E) = f^{-1}(P_i^{-1}(V_i, E))$ is soft π g-open in X. Therefore $P_i \circ f$ is soft almost π g-continuous.

Theorem: 3.8

If a function f: $\prod X_i \to \prod Y_i$ is soft almost soft π g-continuous, then $f_i: X_i \to Y_i$ is soft almost π g-continuous for each $i \in I$.

Proof:

Let *k* be an arbitrarily fixed index and (V_k, E) be any soft regular open set of Y_k . Then $\prod Y_k \times (V_k, E)$ is soft regular open in $\prod Y_i$ where $j \in I$ and $j \neq k$. Hence $f^{-1}(\prod Y_k \times (V_k, E)) = \prod Y_k \times f_k^{-1}(V_k, E)$ is soft πg -open in $\prod X_i$. Thus $f_k^{-1}(V_k, E)$ is soft πg -open in $\prod X_k$. Hence f_k is soft almost πg -continuous.

Definition: 3.9

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is called

- 1. Soft almost g-continuous, if $f^{-1}(A, E)$ is soft g-closed in X for every soft regular closed (A, E) of Y.
- 2. Soft almost π -continuous, if $f^{-1}(A, E)$ is soft π -closed in X for every soft regular closed (A, E) of Y.
- 3. Soft completely continuous, if $f^{-1}(A, E)$ is soft regular closed in X for every soft closed set (A, E) of Y.

Theorem: 3.10

- 1. Every soft R-Map is soft almost π -continuous.
- 2. Every soft almost π -continuous is soft almost-continuous.
- 3. Every soft almost π -continuous is soft almost π g-continuous.
- 4. Every soft almost continuous is soft almost g-continuous.
- 5. Every soft almost g-continuous is soft almost π g-continuous.

Remark: 3.11

The following diagram holds for the above implications. Also none of the results are reversible as seen in the following examples.

- 1. Soft almost π -continuous
- 2. Soft R-map
- 3. Soft almost g-continuous
- 4. Soft almost continuous
- 5. Soft almost π g-continuous

Example 3.12

Let X = {a, b, c, d}, Y= {a, b, c}, E= {e₁, e₂}. Let F₁, F₂, F₃, F₄, F₅, F₆ and G₁, G₂, G₃, G₄, G₅, G₆ G₇ are functions from E to P(X) and E to P(Y) are defined as follows: F₁(e₁) = {c}, F₁(e₂) = { a}; F₂(e₁) = {d}, F₂(e₂) = { b}; F₃(e₁) = {c, d}, F₃(e₂) = { a, b}; F₄(e₁) = {a, d}, F₄(e₂) = {b, d} F₅(e₁) = {b, c, d}, F₅(e₂) = {a, b, c}; F₆(e₁) = {a, c}, G₂(e₂) = {b, c}, G₃(e₁) = {b}, G₃(e₂) = { a}, G₃(e₁) = { b}, G₃(e₂) = X, G₄(e₁) = Ø, G₄(e₂) = { a}, G₅(e₁) = { a, c}, G₅(e₂) = X, G₆(e₁) = Ø, G₆(e₂) = { b, c}, G₇(e₁) = Ø, G₇(e₂) = X. Then $\tau = {\tilde{Ø}, \tilde{X}, (F_1, E), (F_2, E), (F_3, E), (F_4, E), (F_5, E), (F_6, E)}$ is a soft topological space over X and $\tau' = {\tilde{Ø}, \tilde{Y}, (G_1, E), (G_2, E), (G_3, E), (G_4, E), (G_5, E), (G_6, E), (G_7, E), }$ is a soft topological space over Y. If the function f: (X, τ, E) \rightarrow (Y, τ', E) is defined as f (a) =b, f (b) =a, f(c) =c, f (d) =d, then f is soft almost continuous but not soft almost π -continuous.

Example 3.13

Let X = {a, b, c, d}, Y= {a, b, c}, E= {e₁, e₂}. Let F₁, F₂, F₃, F₄, F₅, F₆ and G₁, G₂, G₃, G₄, G₅, G₆ G₇ are functions from E to P(X) and E to P(Y) are defined as follows: F₁(e₁) = {c}, F₁(e₂) = { a}; F₂(e₁) = {d}, F₂(e₂) = { b}; F₃(e₁) = {c, d}, F₃(e₂) = { a, b}; F₄(e₁) = {a, d}, F₄(e₂) = {b, d} F₅(e₁) = {b, c, d}, F₅(e₂) = {a, b, c}; F₆(e₁) = {a, c}, G₂(e₂) = {b, c}, G₃(e₁) = {b}, G₃(e₂) = { a, b, d} and G₁(e₁) = {b}, G₁(e₂) = { a}; G₂(e₁) = { a, c}, G₂(e₂) = { b, c}, G₃(e₁) = { b}, G₃(e₂) = X, G₄(e₁) = Ø, G₄(e₂) = { a}, G₅(e₁) = { a, c}, G₅(e₂) = X, G₆(e₁) = Ø, G₆(e₂) = { b, c}, G₇(e₁) = Ø, G₇(e₂) = X. Then $\tau = {\tilde{\emptyset}, \tilde{X}, (F_1, E) (F_2, E), (F_3, E), (F_4, E), (F_5, E), (F_6, E)}$ is a soft topological space over X and $\tau' = {\tilde{\emptyset}, \tilde{Y}, (G_1, E), (G_2, E), (G_3, E), (G_4, E), (G_5, E), (G_6, E), (G_7, E), }$ is a soft topological space over Y. If the function f: (X, τ , E) \rightarrow (Y, τ' , E) is defined as f(a) =b, f(b) =d, f(c) =c, f(d) =a, then f is soft almost π g-continuous but not soft almost π -continuous.

Example 3.14

Let X = {a, b, c, d}, Y= {a, b, c}, E= {e₁, e₂}. Let F₁, F₂, F₃, F₄ and G₁, G₂, G₃, G₄, G₅, G₆ G₇ are functions from E to P(X) and E to P(Y) are defined as follows: F₁(e₁) = {a}, F₁(e₂) = { d}; F₂(e₁) = {b}, F₂(e₂) = {c}; F₃(e₁) = {a, b}, F₃(e₂) = {c, d}; F₄(e₁) = {b, c, d}, F₄(e₂) = {a, b, c} and G₁(e₁) = {b}, G₁(e₂) = {a}; G₂(e₁) = {a, c}, G₂(e₂) = {b, c}, G₃(e₁) = {b}, G₃(e₂) = X, G₄(e₁) = Ø, G₄(e₂) = {a}, G₅(e₁) = {a, c}, G₅(e₂) = X, G₆(e₁) = Ø, G₆(e₂) = {b, c}, G₇(e₁) = Ø, G₇(e₂) = X. Then $\tau = {\tilde{\emptyset}, \tilde{X}, (F_1, E), (F_2, E), (F_3, E), (F_4, E), (F_5, E), (F_6, E)}$ is a soft topological space over X and $\tau' = {\tilde{\emptyset}, \tilde{Y}, (G_1, E), (G_2, E), (G_3, E), (G_4, E), (G_5, E), (G_6, E), (G_7, E), }$ is a soft topological space over Y. If the function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is defined as f (a) =b, f (b) =d, f(c) =c, f (d) =a then f is soft almost g-continuous but not soft almost continuous.

Example 3.15

In example: 3.13 we see that f is soft almost π g-continuous but not soft almost g-continuous, since $f^{-1}(G_2, E)$ is not soft g-closed in X.

Lemma: 3.16

Let (X, τ, E) be a soft topological space. If (U, E), $(V, E) \in \tilde{S}\pi GO(X)$ and X is a soft submaximal space then $(U \times V, E) \in \tilde{S}\pi GO(X)$.

Theorem: 3.17

Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ be soft function and let g: $(X, \tau, E) \rightarrow (X \times Y, \tau \times \tau', E)$ be the soft graph function of f, defined by g(x) = (x, f(x)) for every $x \in X$. Suppose that X be soft submaximal space. Then g is soft almost π g-continuous, if and only if f is soft almost continuous.

Proof:

Let $x \in X$ and $(V, E) \in \tilde{S}RO(Y)$ containing f(x). Then we have $g(x) = (x, f(x)) \in X \times (V, E) \in \tilde{S}RO(X \times Y)$. Since g is soft almost πg -continuous, $g^{-1}(X \times (V, E)) = f^{-1}(V, E) \in \tilde{S}\pi GO(X)$. Thus f is soft almost πg -continuous.

Conversely let $x \in X$ and $(W, E) \in \tilde{S}RO(X \times Y)$ containing g(x). Then there exists $(U, E) \in \tilde{S}RO(X)$ and $(V, E) \in \tilde{S}RO(Y)$ such that $(x, f(x)) \in (U \times V, E) \subset (W, E)$. Since f is soft almost πg -continuous, $f^{-1}(V, E) \in \tilde{S}\pi GO(X)$. Say $(A, E) = f^{-1}(V, E)$ and take $(B, E) = (U, E) \cap (A, E)$. By previous lemma $(B, E) \in \tilde{S}\pi GO(X)$ and $g(B, E) \subset (U \times V, E) \subset (W, E)$. This shows that g is soft almost πg -continuous.

Theorem: 3.18

Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ and g: $(Y, \tau', E) \rightarrow (Z, \tau'', E)$ be soft almost πg -continuous and Y is soft Hausdorff. If X is soft submaximal then the set $\{x \in X: f(x) = g(x)\}$ is soft πg -closed in X.

Proof:

Let $(A, E) = \{ x \in X : f(x) = g(x) \}$ and $x \in X \setminus (A, E)$. Then $f(x) \neq g(x)$. Since Y is soft Hausdorff, there exist soft open sets (U, E) and (V, E) of Y, such that $f(x) \in (U, E)$,

g(x) ∈(U, E) and (U, E)∩(A, E) = Ø. since f and g are soft almost πg-continuous, (G, E) = f^{-1} (int(cl(U, E))) ∈ $\tilde{S}\pi GO(X, x)$ and (H, E) = g^{-1} (int(cl(V, E))) ∈ $\tilde{S}\pi GO(X, x)$. Take (W, E) = (G, E)∩(H, E) then (W, E) ∈ $\tilde{S}\pi GO(X, x)$ and f(W, E)∩ g(W, E) \tilde{C} int(cl(U, E)) ∩ int(cl(V, E)) = Ø. Therefore (W, E)∩(A, E) = Ø. Hence $x \in X \setminus \tilde{S}\pi g$ -cl (A, E). This shows that (A, E) is soft πg-closed in X.

Theorem: 3.19

Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ and g: $(Y, \tau', E) \rightarrow (Z, \tau'', E)$ be functions. Then the following properties hold:

- 1. if f is soft almost πg -continuous and g is soft R-map, then $g \circ f: (X, \tau, E) \rightarrow (Z, \tau'', E)$ is soft almost πg -continuous.
- 2. if f is soft πg -irresolute and g is soft πg -continuous, then $g \circ f: (X, \tau, E) \rightarrow (Z, \tau'', E)$ is soft almost πg -continuous.
- 3. if f is soft almost πg -continuous and g is soft completely continuous, then $g \circ f: (X, \tau, E) \rightarrow (Z, \tau'', E)$ is soft almost πg -continuous.
- 4. if f is soft almost πg -continuous and g is soft almost continuous, then $g \circ f$: (X, τ , E) \rightarrow (Z, τ'' , E) is soft almost πg -continuous.

Definition: 3.20

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is said to be soft weakly π g-continuous, if $f^{-1}(cl(A, E))$ is soft π g-open in X for every soft open set (A, E) of Y.

Theorem: 3.21

Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ be a soft function. Suppose that X is soft $\pi g \cdot T_{1/2}$ space and Y is soft regular space. Then the following properties equivalent:

- 1. f is soft π g-continuous
- 2. f is soft almost π g-continuous
- 3. f is soft weakly π g-continuous

Proof:

 $(1) \Longrightarrow (2) \Longrightarrow (3)$. This is obvious.

Theorem: 3.22

If for each pair of distinct points x and y in a soft space X, there exists a function f of X into a soft Hausdorff space Y such that

- 1. $f(x) \neq f(y)$
- 2. f is soft weakly π g-continuous at x and
- 3. f is soft almost π g-continuous at *y*, then X is soft π g-T₂.

Proof:

Since Y soft Hausdorff, there exists soft open sets (U, E) and (V, E) of Y such that $f(x) \in (U, E)$ and $f(y) \in (V, E)$ and $(U, E) \cap (V, E) = \emptyset$. Hence $cl(U, E) \cap (int(cl(V, E))) = \emptyset$. Since f is soft weakly πg -continuous at x, there exists (A, E) $\in \tilde{S}\pi GO(X, x)$ such that $f(A, E) \subset cl(U, E)$. Since f is soft almost πg -continuous at y, $f^{-1}(int(cl(V, E))) = 0$.

(B, E) ∈ $\tilde{S}\pi GO(X, y)$. Therefore we obtain (A, E) ∩(B, E) =Ø. This shows that X is soft πg -T_{2.}

Theorem: 3.23

If f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is soft almost πg -continuous surjective function and X is soft πg -connected space, then Y is soft connected.

Proof:

Suppose Y is not soft connected. Then there exist non-empty disjoint soft open subsets (U, E) and (V, E) of Y such that $Y = (U, E) \cup (V, E)$. Since f is soft almost πg -continuous, then $f^{-1}(U, E)$ and $f^{-1}(V, E)$ are non-empty disjoint soft πg -clopen sets in X. Then we have $X = f^{-1}(U, E) \cup f^{-1}(V, E)$ such that $f^{-1}(U, E)$ and $f^{-1}(V, E)$ are disjoint. This shows that X is not soft πg -connected which is a contradiction. Hence Y is soft connected.

Definition: 3.24

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ has a soft $(\pi g, r)$ -graph if for each $(x, y) \in X \times Y \setminus G(f)$, there exists $(U, E) \in \tilde{S}\pi GO(X, x)$ and a regular open set (V, E) of Y containing y such that $(U \times V, E) \cap G(f) = \emptyset$.

Lemma: 3.25

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ has a soft $(\pi g, r)$ -graph if and only if for each $(x, y) \in X \times Y$ such that $y \neq f(x)$, there exists a soft πg -open set (U, E) and a regular open set (V, E) containing x and y respectively such that $f(U, E) \cap (V, E) = \emptyset$.

Theorem: 3.26

If f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is a soft almost π g-continuous function and Y is soft Hausdorff then f has a soft (π g, r)-graph.

Proof:

Let $(x, y) \in X \times Y$ such that $y \neq f(x)$. Then there exists a soft open sets (U, E) and (V, E) such that, $y \in (U, E)$, $f(x) \in (V, E)$ and $(U, E) \cap (V, E) = \emptyset$. Hence $int(cl(U, E)) \cap int(cl(V, E)) = \emptyset$. Since f is soft almost πg -continuous, $f^{-1}(int(cl(U, E))) = (W, E) \in \tilde{S}\pi GO(X, x)$. This implies that $f(W, E) \cap int(cl(U, E)) = \emptyset$. Therefore f has a soft $(\pi g, r)$ -graph.

Definition: 3.27

A space (X, τ, E) is said to be:

- 1. Soft nearly compact, if every soft regular open cover of X has a finite soft subcover.
- 2. soft nearly countably compact, if every countable soft cover of X by soft regular open sets has a finite soft subcover.
- 3. Soft nearly Lindelof, if every cover of X by soft regular open sets has a countable soft subcover.

Theorem: 3.28

Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ be a soft almost π g-continuous surjection. Then the following statements hold:

- 1. If X is soft π g-compact, then Y is soft nearly compact
- 2. If X is soft π g-Lindelof, then Y is soft nearly Lindelof.
- 3. If X is soft countably π g-compact, then Y is soft nearly countably compact.

4. Soft almost πg -open function and soft almost πg -closed function Definition: 4.1

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is called soft almost open(Soft almost closed), if the image of every soft regular open subset of X is soft open(soft regular closed) subset of Y.

Definition: 4.2

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is called soft almost πg -open(Soft almost πg -closed), if the image of every soft regular open subset of X is soft πg -open (soft πg -closed) subset of Y.

Remark: 4.3

A one to one soft function is soft almost πg -open if and if it is soft almost πg -closed.

Remark: 4.4

Every soft πg -open function is soft almost πg -open. But the converse is not true in general.

Example: 4.5

Let X ={a, b, c, d}, Y= {a, b, c, d}, E= {e₁, e₂}. Let F_1 , F_2 , F_3 , F_4 , F_5 , F_6 and G_1 , G_2 , G_3 , G_4 , are functions from E to P(X) and E to P(Y) are defined as follows:

$$\begin{split} F_1(e_1) &= \{c\}, \ F_1(e_2) = \{\ a\}; \ F_2(e_1) = \{d\ \}, \ F_2(e_2) = \{b\ \}; \ F_3(e_1) = \{c, d\ \}, \ F_3(e_2) = \{\ a, b\}; \\ F_4(e_1) &= \{a, d\ \}, \ F_4(e_2) = \{b, d\ \} \ F_5(e_1) = \{b, c, d\ \}, \ F_5(e_2) = \{a, b, c\ \}; \ F_6(e_1) = \{a, c, d\ \}, \ F_6(e_2) = \{a, b, d\ \} \ and \ G_1(e_1) = \{a\ \}, \ G_1(e_2) = \{d\ \}; \ G_2(e_1) = \{b\}, \ G_2(e_2) = \{c\ \}, \\ G_3(e_1) &= \{a, b\ \}, \ G_3(e_2) = \{c, d\ \}, \ G_4(e_1) = \{b, c, d\ \}, \ G_4(e_2) = \{a, b, c\ \}. \\ Then \ \tau = \{\widetilde{\emptyset}, \widetilde{X}, \ (F_1, E), (F_2, E), (F_3, E), (F_4, E), (F_5, E), (F_6, E)\} \ is a \ soft \ topological \ space \ over \ X \ and \\ \tau' &= \{\widetilde{\emptyset}, \widetilde{Y}, \ (G_1, E), \ (G_2, E), \ (G_3, E), \ (G_4, E)\} \ is \ a \ soft \ topological \ space \ over \ Y. \ If \ the \ function \ f: \ (X, \tau, E) \rightarrow (Y, \tau', E) \ is \ defined \ as \ f(a) = d, \ f(b) = a, \ f(c) = c, \ f(d) = b, \ then \ f \ is \ soft \ almost \ \pi g-open \ but \ not \ soft \ \pi g-open. \end{split}$$

Theorem: 4.6

If f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is a soft almost closed function of X onto Y then for every soft regular open subset (G, E) of X and for every soft point $y \in Y$ such that $f^{-1}(y) \subset (G, E)$ we have $y \in int(f(G, E))$.

Proof:

Since (G, E) is soft regular open, X\(G, E) is soft regular closed. Since f is soft almost πg -continuous, f(X\(G, E)) is soft πg -closed. Since $f^{-1}(y) \widetilde{\subset}(G, E), y \notin f(X \setminus (G, E))$. Hence there must exist a soft open set (U, E) containing y such that (U, E) \cap f(X\(G, E)) = \emptyset . Then $y \in (U, E) \widetilde{\subset}$ (f(G, E). this shows that y is a soft interior point of f(G).

Theorem: 4.7

A surjection f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is soft almost πg -closed if and only if for each subset (A, E) of Y and each (U, E) $\in \widetilde{SRO}(X)$ containing $f^{-1}(A, E)$ there exists a soft πg -open set (V, E) of Y such that (A, E) $\widetilde{\subset}(U, E)$ and $f^{-1}(V, E) \widetilde{\subset}(U, E)$.

Proof:

Suppose that f is soft almost πg -closed. Let (A, E) be a subset of Y and (U, E) \in SRO(X) containing $f^{-1}(A, E)$. If (V, E) = Y\f(X\(U, E)) then (V, E) is soft πg -open set of Y such that (A, E) \cong (U, E) and $f^{-1}(V, E) \cong$ (U, E).

Conversely let (F, E) be any soft regular closed set of X. Then $f^{-1}(Y \setminus f(F, E)) \cong X \setminus (F, E)$ and $X \setminus (F, E) \in SRO(X)$. Then there exists a soft πg -open set (V, E) of Y such that $Y \setminus f(F, E) \cong (V, E)$ and $f^{-1}(V, E) \cong X \setminus (F, E)$. Therefore $Y \setminus (V, E) \cong f(F, E) \cong f(X \setminus f^{-1}((V, E) \cong Y \setminus (V, E))$. Hence we obtain $f(F, E) = Y \setminus (V, E)$ and f(F, E) is soft πg -closed in Y which shows that f is soft πg -closed.

Definition: 4.8

A space (X, τ, E) is said to be soft quasi-normal, if for any two disjoint soft π -closed sets (A, E) and (B, E) in (X, τ, E) , there exists disjoint soft open sets (U, E) and (V, E) such that $(A, E) \cong (U, E)$ and $(B, E) \cong (V, E)$.

Definition: 4.9

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is called

- 1. Soft π -closed injection, if f (A, E) is soft π -closed in Y for every soft π -closed set (A, E) of X.
- 2. Soft almost π -continuous, if $f^{-1}(A, E)$ is soft π -closed in X for every soft regular closed set (A, E) of Y.
- 3. Soft π -irresolute, if $f^{-1}(A, E)$ is soft is soft π -closed in X for every soft π -closed set (A, E) of Y.

Theorem: 4.10

If f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is soft almost π g-continuous, soft π -closed injection and Y is soft quasi-normal space then X is soft quasi-normal.

Proof:

Let (A, E) and (B, E) be any disjoint soft π -closed sets of X. Since f is a soft π -closed injection, f(A, E) and f(B, E) are disjoint soft π -closed sets of Y. Since Y is soft quasinormal there exists disjoint soft open sets (U, E) and (V, E) of Y such that f(A, E) \cong (U, E) and f(B, E) \cong (V, E). Now if (G, E) = intcl(U, E) and (H, E) = intcl(V, E), then

(G, E) and (H, E) are disjoint soft regular open sets such that $f(A, E) \cong (G, E)$ and $f(B, E) \cong (H, E)$.Since f is soft almost πg -continuous, $f^{-1}(G, E)$ and $f^{-1}(H, E)$ are disjoint soft πg -open sets containing (A, E) and (B, E) which shows that X is soft quasi-normal.

Lemma: 4.11

A surjection f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is soft almost closed if and only if for each subset (A, E) of Y and each (U, E) $(U, E) \in \tilde{S}RO(X)$ containing $f^{-1}(A, E)$ there exists a soft open set (V, E) of Y such that $(A, E) \cong (V, E)$ and $f^{-1}(V, E) \cong (U, E)$.

Theorem: 4.12

If f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is soft almost π -continuous, soft almost closed surjection and X is soft quasi-normal space then Y is soft quasi-normal.

Proof:

Let (A, E) and (B, E) be any two disjoint soft closed sets of Y. Then f^{-1} (A, E) and f^{-1} (B, E) are disjoint soft π -closed sets of X. Since X is soft quasi-normal there exists a disjoint soft open sets (U, E) and (V, E) such that f^{-1} (A, E) \cong (U, E) and f^{-1} (B, E) \cong (V, E). Let (G, E) = intcl (U, E) and (H, E) = intcl(V, E). Then (G, E) and (H, E) are disjoint soft regular open sets of X such that f^{-1} (A, E) \cong (G, E) and f^{-1} (B, E) \cong (H, E). Take (K, E) = Y (K (G, E)) and (L, E) = Y (G (G, E)) and f^{-1} (B, E) \cong (L, E), f^{-1} (K, E) \cong (G, E) and f^{-1} (L, E) \cong (H, E). Since (G, E) and (H, E) are disjoint, (K, E) and (L, E) are disjoint. Since (K, E) and (L, E) are soft open, we obtain (A, E) \cong int(K, E), (B, E) \cong int(L, E) and (A, E) \cong int(K, E) \cap (B, E) \cong int(L, E) = Ø. Therefore Y is soft quasi-normal.

Lemma: 4.13

A subset (A, E) of a space X is soft π g-open if and only if (F, E) \cong int (A, E) whenever (F, E) is soft π -closed and (F, E) \cong (A, E)

Theorem: 4.14

Let f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ be a soft π -continuous and soft almost π g-closed surjection. If X is soft quasi-normal space then Y is soft quasi-normal.

Proof:

Let (A, E) and (B, E) be any two disjoint soft π -closed sets of Y. Since f is soft π continuous, f^{-1} (A, E) and f^{-1} (B, E) are disjoint soft π -closed sets of X. Since X is soft quasi-normal there exists a disjoint soft open sets (U, E) and (V, E) of X such that f^{-1} (A, E) \cong (U, E) and f^{-1} (B, E) \cong (V, E). Let (G, E) = intcl (U, E) and (H, E) = intcl (V, E). Then (G, E) and (H, E) are disjoint soft regular open sets of X such that f^{-1} (A, E) \cong (G, E) and f^{-1} (B, E) \cong (H, E). Then by theorem: 4.10 there exists soft π g-open sets (K, E) and (L, E) of Y such that (A, E) \cong (K, E) and (B, E) \cong (L, E), f^{-1} (K, E) \cong (G, E) and f^{-1} (L, E) \cong (H, E). Since (G, E) and (H, E) are disjoint, (K, E) and (L, E) are disjoint. By previous we obtain (A, E) \cong int (K, E), (B, E) \cong int(L, E) and (A, E) \cong int(K, E) \cap (B, E) \cong int(L, E) = Ø. Therefore Y is soft quasi-normal.

Definition: 4.15

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is said to be soft quasi π g-compact, if it is onto and if (A, E) is soft π g-open (soft π g-closed) whenever f^{-1} (A, E) is soft open (soft closed).

Definition: 4.16

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is said to be soft almost quasi π g-compact, if it is onto and if (A, E) is soft π g-open (soft π g-closed) whenever f^{-1} (A, E) is soft regular open (soft regular closed).

Theorem: 4.17

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ of X onto Y is soft almost quasi π g-compact if and only if the image of every soft regular open inverse is soft π g-open.

Proof:

Let f be a soft almost quasi π g-compact. Let (A, E) be any soft regular open inverse set. Then since $f^{-1}(f(A, E)) = (A, E)$ is soft regular open, f(A, E) is soft π g-open. Conversely, if $f^{-1}(F, E)$ be soft regular open, then $f^{-1}(A, E)$ is soft regular inverse set. Therefore $f(f^{-1}(A, E))$ is soft π g-open. That is (F, E) is soft π g-open. Hence f is soft almost quasi π g-compact.

Corollory: 4.18

A function f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ of X onto Y is soft almost quasi πg -compact if and only if the image of every soft regular closed inverse is soft πg -closed.

Theorem: 4.19

If f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ is one to one functions of X onto Y then the following properties are equivalent:

- 1. f is soft almost π g-open
- 2. f is soft almost π g-closed.
- 3. f is soft almost quasi π g-compact
- 4. f^{-1} is soft almost π g-continuous

Theorem: 4.20

Suppose that f: $(X, \tau, E) \rightarrow (Y, \tau', E)$ and g: $(Y, \tau', E) \rightarrow (Z, \tau'', E)$ be functions. Then the following properties:

- 1. if f is soft almost πg -continuous and if $g \circ f$ is soft πg -open then g is soft almost πg -open.
- 2. if f is soft almost πg -continuous and if $g \circ f$ is soft πg -closed then g is soft almost πg -closed.
- 3. if f is soft almost πg -continuous and if $g \circ f$ is soft quasi πg -compact then g is soft almost quasi πg -compact.

References

- [1] C.G. Aras and A. Sonmez, On soft mappings, arXiv: 1305.4545, (2013).
- [2] I.Arockiarani and A.Selvi, Soft π g-operators in soft topological spaces, International Journal of Mathematical archive, 5(4) 2014, 37-43.
- [3] I.Arockiarani and A.Selvi, Soft π g-continuous functions and irresolute functions, International Journal of Innovation and Applied Studies, 7(2)2014, 440-446.
- [4] I.Arockiarani and A.Selvi, On soft contra π g-continuous functions, International Journal of Mathematics Trends and Technology, 19(2)2015, 80-90.
- [5] Athar Kharal and B. Ahmad, Mappings on soft classes, arXiv: 1006.4940(2010).
- [6] E.Ekici, On almost π gp-continuous functions, Chaos Solitons and Fractals, 32(2005) 1935-1944.
- [7] K.Kannan, Soft Generalized closed sets in soft Topological Spaces, Journal of Theoretical and Applied Information Technology, 37 (2012), 17-20.
- [8] D.Molodtsov, Soft set Theory-First Results, Computers and Mathematics with Applications (1999), 19-31.
- [9] Saziye Yuksel, Naime Tozlu, Zehra Guzel regul, On soft generalized closed sets in Soft topological Spaces, Journal of Theoretical and Applied Information Technology, 37 (2012), 17-20.
- [10] M.Shabir and M. Naz, On Soft topological spaces, Computers and Mathematics with Applications (2011), vol.61, Issue 7, 1786-1799.
- [11] Signal MK, Signal AR, Almost continuous mappings, Yokohama Math J 16(1968) 63-73.
- [12] Y.Yumak, A.K.Kayamakci, Soft β -open sets and their application arXiv: 1312.6964(2013).
- [13] I.Zortlutuna, M. Akday, W.K.Min, S.Atmaca, Remarks on soft topological spaces, Annals of fuzzy mathematical and Informatics, 3(2012) 171-185.

A. Selvi and I. Arockiarani