Super Geometric Mean Labeling Of Some Disconnected Graphs

S.S.Sandhya, E. Ebin Raja Merly and B.Shiny

1. Department of Mathematics,
Sree Ayyappa College for Women,
Chunkankadai – 629 003
Kanyakumari District
Tamil Nadu

2. Department of Mathematics,
Nesamony Memorial Christian College,
Marthandam – 629 165,
Kanyakumari District,
Tamil Nadu.

3. Department of Mathematics,
DMI Engineering College,
Aralvaimozhi – 629 301,
Kanyakumari District,
Tamil Nadu

ABSTRACT

Let f: V(G) → {1,2,...,p+q} be an injective function. For a vertex labeling “f”, the induced edge labeling f*(e=uv) is defined by, f*(e)=[(f(u)+f(v))/2] or [(f(u)f(v))]. Then “f” is called a “Super Geometric mean labeling” if \{f(V(G))\}∪{f(e):e∈E(G)}={1,2,...,p+q}. A graph which admits Super Geometric mean labeling is called “Super Geometric mean graph”. In this paper we prove that some disconnected graphs are Super Geometric mean graphs.

Key words: Graph, Super Geometric mean graph, Path, Comb and Ladder.
1. Introduction
The graphs considered here are simple, finite and undirected graphs. Let $V(G)$ denote the vertex set of G and $E(G)$ denote the edge set of G. For a detailed survey of graph labeling we refer to Gallian [1]. For all other standard terminology and notations we follow Harary [2]. The concept of “Geometric mean labeling” has been introduced by S.Somasundaram, R.Ponraj and P.Vidhyarani in [4]. S.S.Sandhya, E. Ebin Raja Merly and B.Shiny introduced “Super Geometric mean labeling” in [5].
In this paper, we investigate “Super Geometric mean labeling” behavior of some disconnected graphs.
Now we will give the following definitions which are necessary for our present investigation.

Definition: 1.1
A graph $G=(V,E)$ with p vertices and q edges is called a “Geometric mean graph” if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1, 2, \ldots, q+1$ in such a way that when each edge $e=uv$ is labeled with $f(e=uv)=\left[\sqrt[2]{f(u)f(v)}\right]$ or $\left[\sqrt[3]{f(u)f(v)}\right]$ then the edge labels are distinct. In this case, “f” is called a “Geometric mean labeling” of G.

Definition: 1.2
Let $f: V(G) \rightarrow \{1, 2, \ldots, p+q\}$ be an injective function. For a vertex labeling “f”, the induced edge labeling $f^* (e=uv)$ is defined by,
$$f^*(e)=\left[\sqrt[2]{f(u)f(v)}\right] \text{ or } \left[\sqrt[3]{f(u)f(v)}\right].$$
Then “f” is called a “Super Geometric mean labeling” if \{f(V(G)))\} \cup \{f(e):e \in E(G)$\}=\{1, 2, \ldots, p+q\}$. A graph which admits Super Geometric mean labeling is called “Super Geometric mean graph”.

Definition: 1.3
The union of two graphs $G_1=(V_1,E_1)$ and $G_2=(V_2, E_2)$ is a graph $G=G_1 \cup G_2$ with vertex set $V=V_1 \cup V_2$ and the edge set $E=E_1 \cup E_2$.

Definition: 1.4
A path P_n is a walk in which all the vertices are distinct.

Definition: 1.5
A graph obtained by joining a single pendant edge to each vertex of a path is called a Comb ($P_n \vee K_1$).

Definition: 1.6
The Ladder L_n, $n \geq 2$ is the product graph $P_n \times P_2$ and contains $2n$ vertices and $3n-2$ edges.

Definition: 1.7
The graph $P_n \vee K_{1,2}$ is obtained by attaching $K_{1,2}$ to each vertex of P_n.
Definition: 1.8
The graph $P_n \triangle K_{1,3}$ is obtained by attaching $K_{1,3}$ to each vertex of P_n.

2. Main Results
Theorem: 2.1
$P_m \cup P_n$ is a Super Geometric mean graph.

Proof:
Let $P_m = u_1 u_2 \ldots u_m$ be a path on “m” vertices.
Let $P_n = t_1 t_2 \ldots t_n$ be another one path on “n” vertices.
Let $G = P_m \cup P_n$
Define a function $f: V(G) \to \{1, 2, \ldots, p + q\}$ by,

$f(u_i) = 2i - 1, 1 \leq i \leq m$
$f(t_i) = 2m + 2i - 2, 1 \leq i \leq n$

Edge labels are given by,

$f(u_i u_{i+1}) = 2i, 1 \leq i \leq m - 1$
$f(t_i t_{i+1}) = 2m + 2i - 1, 1 \leq i \leq n - 1$

: The edge labels are distinct.
Thus “f” provides a Super Geometric mean labeling.
Hence $P_m \cup P_n$ is a Super Geometric mean graph.

Example: 2.2
A Super Geometric mean labeling of $P_7 \cup P_8$ is shown below.

![Figure: 1](image)

Theorem: 2.3
$(P_m \triangle K_1) \cup P_n$ is a Super Geometric mean graph.

Proof:
Let $(P_m \triangle K_1)$ be a Comb graph obtained from a path $P_m = v_1 v_2 \ldots v_m$ by joining a vertex u_i to v_i, $1 \leq i \leq m$. Let $P_n = w_1 w_2 \ldots w_n$ be a path.
Let $G = (P_m \triangle K_1) \cup P_n$
Define a function $f: V(G) \to \{1, 2, \ldots, p + q\}$ by,

$f(v_i) = 4i - 1, 1 \leq i \leq m$
$f(w_i) = 2m + 2i - 2, 1 \leq i \leq n$

Edge labels are given by,

$f(u_i u_{i+1}) = 2i, 1 \leq i \leq m - 1$
$f(t_i t_{i+1}) = 2m + 2i - 1, 1 \leq i \leq n - 1$

: The edge labels are distinct.
Thus “f” provides a Super Geometric mean labeling.
Hence $(P_m \triangle K_1) \cup P_n$ is a Super Geometric mean graph.
\(f(u_i) = 4i-3, \quad 1 \leq i \leq m \)
\(f(w_i) = 4m+2i-2, \quad 1 \leq i \leq n \)

Edges are labeled with,
\(f(v_i v_{i+1}) = 4i, \quad 1 \leq i \leq m-1 \)
\(f(u_i v_i) = 4i-2, \quad 1 \leq i \leq m \)
\(f(w_i w_{i+1}) = 4m+2i-1, \quad 1 \leq i \leq n-1 \)

Thus we get distinct edge labels.

Hence \((P_m \cup K_1) \cup P_n\) is a Super Geometric mean graph.

Example: 2.4

Super Geometric mean labeling of \((P_6 \cup K_1) \cup P_5\) is given below.

\[
\begin{align*}
G &= L_m \cup P_n.
\end{align*}
\]

\[
\begin{align*}
f(v_1) &= 1 \\
f(v_i) &= 5i-2, \quad 2 \leq i \leq m. \\
f(u_1) &= 4 \\
f(u_i) &= 5i-4, \quad 2 \leq i \leq m. \\
f(w_1) &= 5m+2i-3, \quad 1 \leq i \leq n. \\
\end{align*}
\]

Edges are labeled with,
\(f(v_1 v_2) = 3 \)
\(f(v_i v_{i+1}) = 5i, \quad 2 \leq i \leq m-1 \)
\(f(u_1 u_2) = 5, \)

Theorem: 2.5

\(L_m \cup P_n \) is a Super Geometric mean graph.

Proof:

Let \(L_m = P_m \times P_2 \) be a ladder, \(P_m = v_1 v_2 \ldots v_m \) Let \(P_n = w_1 w_2 \ldots w_n \) be a path

Let \(G = L_m \cup P_n \).

Define a function \(f: V(G) \rightarrow \{1, 2, \ldots, p+q\} \) by,
\(f(v_1) = 1 \)
\(f(v_i) = 5i-2, \quad 2 \leq i \leq m. \)
\(f(u_1) = 4 \)
\(f(u_i) = 5i-4, \quad 2 \leq i \leq m. \)
\(f(w_1) = 5m+2i-3, \quad 1 \leq i \leq n. \)

Edges are labeled with,
\(f(v_1 v_2) = 3 \)
\(f(v_i v_{i+1}) = 5i, \quad 2 \leq i \leq m-1 \)
\(f(u_1 u_2) = 5, \)
Super Gometric Mean Labeling Of Some Disconnected Graphs

\[f(u_i u_{i+1}) = 5i - 1, \ 2 \leq i \leq m - 1 \]
\[f(v_i u_i) = 5i - 3, \ 1 \leq i \leq m \]
\[f(w_i w_{i+1}) = 5m + 2i - 2, \ 1 \leq i \leq n - 1 \]
\[\therefore \text{We get distinct edge labels.} \]
\[\therefore \text{Hence "f" provides a Super Geometric mean labeling.} \]
\[\therefore L_m \cup P_n \text{ is a Super Geometric mean graph.} \]

Example: 2.6

Super Geometric mean labeling of \(L_5 \cup P_6 \) is displayed below.

![Figure: 3](image)

Theorem: 2.7

\((P_m \cup K_{1,2}) \cup P_n \) is a Super Geometric mean graph.

Proof:

Let \((P_m \cup K_{1,2}) \) be a graph obtained by attaching each vertex of a path \(P_m \) to the central vertex of \(K_{1,2} \) where \(P_m = u_1 u_2 \ldots u_m \).

Let \(v_i \) and \(w_i \) be the vertices of \(K_{1,2} \) which are attached with the vertex \(u_i \) of \(P_m \), \(1 \leq i \leq m \).

Let \(P_m = z_1 z_2 \ldots z_n \) be a path.

Let \(G = (P_m \cup K_{1,2}) \cup P_n \).

Define a function \(f: V(G) \to \{1,2,\ldots, p+q\} \) by

\[f(u_i) = 6i - 3, \ 1 \leq i \leq m \]
\[f(v_i) = 6i - 5, \ 1 \leq i \leq m \]
\[f(w_i) = 6i - 1, \ 1 \leq i \leq m \]
\[f(z_i) = 6m + 2i - 2, \ 1 \leq i \leq n \]

Edges are labeled with,

\[f(u_i u_{i+1}) = 6i, \ 1 \leq i \leq m - 1 \]
\[f(u_i v_i) = 6i - 4, \ 1 \leq i \leq m \]
f(u_iw_i)=6i-2, 1≤i≤m
f(z_iz_{i+1})=6m+2i-1, 1≤i≤n-1

\therefore The edge labels are distinct.
Hence G admits a Super Geometric mean labeling.
Hence (P_m\Delta K_{1,2})\cup P_n is a Super Geometric mean graph.

Example: 2.8
Super Geometric mean labeling of (P_4\Delta K_{1,2})\cup P_5 is shown below.

![Figure 4](image)

Theorem: 2.9
(P_n\Delta K_{1,3}) is a Super Geometric mean graph.

Proof:
Let (P_n\Delta K_{1,3}) be a graph obtained by attaching each vertex of a path P_m=u_1u_2...u_m to the central vertex of K_{1,3}.
Let v_i, w_i and z_i be the vertices of K_{1,3} which are attached with the vertex u_i of P_m, 1≤i≤m.
Let P_n=t_1t_2...t_n be a path.
Let G=(P_m\Delta K_{1,3})\cup P_n
Define a function f: V(G)→\{1,2,...,p+q\} by,
f(u_i)=8i-3, 1≤i≤m
f(v_i)=8i-7, 1≤i≤m
f(w_i)=8i-5, 1≤i≤m
f(z_i)=8i-1, 1≤i≤m
f(t_i)=8m+2i-2, 1≤i≤n
Edges are labeled with,
f(u_iu_{i+1})=8i, 1≤i≤m-1
f(u_iv_i)=8i-6, 1≤i≤m
Super Geometric Mean Labeling Of Some Disconnected Graphs

\[f(u_iw_i) = 8i - 4, \quad 1 \leq i \leq m \]
\[f(u_iz_i) = 8i - 2, \quad 1 \leq i \leq m \]
\[f(t_{i+1}) = 8m + 2i - 1, \quad 1 \leq i \leq n - 1 \]

From the above labeling pattern, both vertices and edges together get distinct labels from \(\{1, 2, \ldots, p+q\} \).

Hence \((P_m \bigcirc K_{1,3}) \bigcirc P_n\) is a Super Geometric mean graph.

Example: 2.10

Super Geometric mean labeling of \((P_5 \bigcirc K_{1,3}) \bigcirc P_4\) is given below.

![Graph Image]

Figure: 5

Theorem: 2.11

Let \(G_1 \) be a graph obtained from a path \(P_m = v_1v_2 \ldots v_m \) by joining pendant vertices with the vertices of the path \(P_m \) alternatively. Let \(P_n = w_1w_2 \ldots w_n \) be another path. Let \(G = G_1 \bigcirc P_n \). Then \(G \) is a Super Geometric mean graph.

Proof:

Let \(G_1 \) be a graph obtained from a path \(P_m = v_1v_2 \ldots v_m \) by joining pendant vertices with the vertices of the path \(P_m \), alternatively.

Let \(P_n = w_1w_2 \ldots w_n \) be another one path.

Let \(G = G_1 \bigcirc P_n \)

Define a function \(f: V(G) \rightarrow \{1, 2, \ldots, p+q\} \) by,

\[f(v_i) = 3i, \quad i = 1, 3, 5, \ldots, m \]

\[f(v_{2i}) = 6i - 1, \quad 1 \leq i \leq \left\lfloor \frac{m-1}{2} \right\rfloor \]

\[f(u_i) = 3i - 2, \quad i = 1, 3, 5, \ldots, m \]

\[f(w_i) = 3m + 2i - 1, \quad 1 \leq i \leq n \]

Edges are labeled with,

\[f(v_{ij}v_{i+1}) = 3i + 1, \quad i = 1, 3, 5, \ldots, m - 2 \]

\[f(v_{2i}v_{2i+1}) = 6i, \quad 1 \leq i \leq \left\lfloor \frac{m-1}{2} \right\rfloor \]

\[f(v_{ij}u_i) = 3i - 1, \quad i = 1, 3, 5, \ldots, m \]
f(w_{i+1})=3m+2i, 1 \leq i \leq n-1
\therefore \text{We get distinct edge labels.}
\text{Hence } \{f(V(G))\} \cup \{f(e): e \in E(G)\} = \{1, 2, \ldots, p+q\}.
\text{Hence } G \text{ is a Super Geometric mean graph.}

\textbf{Example: 2.12}
Let G_1 be a graph obtained from a path P_9 by joining pendant vertices with the vertices of P_9 alternatively. A Super Geometric mean labeling of $G = G_1 \cup P_3$ is displayed below.

\textbf{Theorem: 2.13}
Let G_1 be a graph obtained from a Ladder L_m, $m \geq 2$ by joining a pendant vertex with a vertex of degree two on both sides of upper and lower path of the ladder. Let $P_n=t_1t_2\ldots t_n$ be another path. Let $G = G_1 \cup P_n$. Then G is a Super Geometric mean graph.

\textbf{Proof:}
Let $L_m=P_n \times P_2$ be a Ladder graph.
Let G_1 be a graph obtained from a Ladder by joining pendant vertices u, w, x, z with v_1, v_n, u_1, u_n (vertices of degree 2) respectively on both sides of upper and lower path of the ladder.
Let $P_n=t_1t_2\ldots t_n$ be another one path.
Let $G = G_1 \cup P_n$
Define a function $f: V(G) \rightarrow \{1, 2, \ldots, p+q\}$ by,
$f(u)=1$
$f(v_1)=5$
$f(v_i)=5i-1, \ 2 \leq i \leq n$
$f(w)=5m+5$
Super Geometric Mean Labeling Of Some Disconnected Graphs

\[f(x) = 3 \]
\[f(u_i) = 5i + 3, \quad 1 \leq i \leq m \]
\[f(z) = 5m + 6 \]
\[f(t_i) = 5m + 2i + 5, \quad 1 \leq i \leq n \]

Edges are labeled with,
\[f(v_i v_{i+1}) = 5i + 2, \quad 1 \leq i \leq m - 1 \]
\[f(u v_1) = 2 \]
\[f(v_m w) = 5m + 2 \]
\[f(x u_1) = 4 \]
\[f(u_1 u_{i+1}) = 5i + 5, \quad 1 \leq i \leq m - 1 \]
\[f(u_m z) = 5m + 4 \]
\[f(v_i u_i) = 5i + 1, \quad 1 \leq i \leq m \]
\[f(t_{i+1}) = 5m + 2i + 6, \quad 1 \leq i \leq n - 1 \]

In view of the above labeling pattern, \(f \) provides a Super Geometric mean labeling of \(G \).
Hence \(G \) is Super Geometric mean graph.

Example: 2.14

A super Geometric mean labeling of \(G \) when \(m = 5 \) and \(n = 6 \) is shown below.

![Figure: 7](image)

Theorem: 2.15

Let \(G_1 \) be a graph obtained by joining a pendant vertex with a vertex of degree two on both sides of a Comb graph. Let \(P_n = w_1 w_2 \ldots w_n \) be another path. Let \(G = G_1 \cup P_n \). Then \(G \) is a Super Geometric mean graph.

Proof:

Comb \((P_m \Delta K_1) \) is a graph obtained from a path \(P_m = v_1 v_2 \ldots v_m \) by joining a vertex \(u_i \) to \(v_i, \quad 1 \leq i \leq m. \)

Let \(G_1 \) be a graph obtained by joining pendant vertices \(w \) and \(z \) to \(v_1 \) and \(v_m \) respectively.

Let \(P_n = w_1 w_2 \ldots w_n \) be another one path.
Let $G=G_1 \cup P_n$.
Define a function $f: V(G) \rightarrow \{1, 2, \ldots, p+q\}$ by,
\[
 f(w) = 1 \\
 f(v_1) = 3 \\
 f(v_i) = 4i+1, \ 2 \leq i \leq m \\
 f(z) = 4m+3 \\
 f(u_1) = 5 \\
 f(u_i) = 4i-1, \ 2 \leq i \leq m \\
 f(w_i) = 4m+2i+2, \ 1 \leq i \leq n \\
\]
Edges are labeled with
\[
 f(wv_1) = 2 \\
 f(v_iv_{i+1}) = 4i+2, \ 1 \leq i \leq m-1 \\
 f(v_nz) = 4m+2 \\
 f(v_iu_i) = 4i, \ 1 \leq i \leq m \\
 f(w_iw_{i+1}) = 4m+2i+3, \ 1 \leq i \leq n-1 \\
\]
\[
 \therefore \text{The edge labels are distinct.} \\
 \text{Hence} \ G \text{ is a Super Geometric mean graph.}
\]

Example: 2.16
A Super Geometric mean labeling of G when $m=5$, and $n=4$ is displayed below.

Theorem 2.17
Let P_m be a path and G_1 be the graph obtained from P_m by attaching C_3 in both end edges of P_m. Let $P_n=w_1w_2\ldots w_n$ be another path. Let $G=G_1 \cup P_n$. Then G is a Super Geometric mean graph.

Proof:
Let P_m be a path $u_1u_2\ldots u_n$ and $v_1u_1u_2$, $v_2u_{n-1}u_n$ be the triangles at the end edges of P_m. The resulting graph is G_1.

![Diagram of Super Geometric mean labeling](image-url)
Let $P_n = w_1w_2...w_n$ be another one path.
Let $G = G_1 \cup P_n$.
Define a function $f: V(G) \rightarrow \{1, 2, ..., p+q\}$ by,
\[
\begin{align*}
 f(v_1) &= 4 \\
 f(u_1) &= 1 \\
 f(u_i) &= 2i+2, \ 2 \leq i \leq m-1 \\
 f(u_m) &= 2m+5 \\
 f(v_2) &= 2m+2 \\
 f(w_i) &= 2m+2i+4, \ 1 \leq i \leq n \\
\end{align*}
\]
Edges are labeled with
\[
\begin{align*}
 f(v_1u_1) &= 2 \\
 f(v_1u_2) &= 5 \\
 f(u_1u_2) &= 3 \\
 f(u_iu_{i+1}) &= 2i+3, \ 2 \leq i \leq m-2 \\
 f(u_{m-1}u_m) &= 2m+3 \\
 f(v_2u_{m-1}) &= 2m+1 \\
 f(v_2u_m) &= 2m+4 \\
 f(w_iw_{i+1}) &= 2m+2i+5, \ 1 \leq i \leq n-1 \\
\end{align*}
\]
\[.\] We get distinct edge labels.
Thus both vertices and edges together get distinct labels from \{1, 2, ..., p+q\}.
Hence G is a Super Geometric mean graph

Example: 2.18
A Super Geometric mean labeling of G when $m=8$ and $n=5$, is shown below.
References: