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ABSTRACT 

 

In this paper we have generalized the Selection-Rejection Methodology for one 

dimensional continuous random variables to n-dimensional continuous random 

variables and applied it to the  n -dimensional normal distribution.                                          
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1.  INTRODUCTION. 

The Selection-Rejection Methodology for one dimensional continuous random 

variables was developed based on the idea of Acceptance-Rejection Method by the 

renowned mathematician, Von Neumann, from the University of Berlin. Von 

Neumann[1] came forward with his method during 1950’s but later on Karl 

Sigman[2] from Columbia University gave the similar methodology in 2007.Again in 

1989,Bernard D.Flury[3] from Indiana University came forward with the theory 

“Acceptance-Rejection Sampling Made Easy”.D.P.Kroese[4] from University of 

Queensland put forward his theory of Acceptance-Rejection in 2011.Selection-

Rejection Methodology can be applied to almost all statistical distributions and hence 

it has got immense physical significance.  

 

 

2. SELECTION-REJECTION METHODOLOGY FOR N-DIMENSIONAL 

CONTINUOUS RANDOM VARIABLES. 

Let 1 2,X ,.....,XnX be a n  dimensional continuous random variable with probability 

distribution function 1 2, ,...., nf x x x , 1,2,.....,ix R i n ,where R =set of all real 

numbers. Let 1 2, ,......, ng x x x , 1,2,...,ix R i n  where R =set of all real numbers 
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be another probability density function such that 
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successively selecting different values of 1 2, ,......, nX X X we will try to make the 

ratio 1 2
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as close to 1 as possible. The probability density function 

1 2, ,......, nf x x x is called target distribution and the probability density function 

1 2, ,......., ng x x x is called proposal distribution. 

The step by step procedure for the Selection-Rejection Methodology is as follows. 

Step (1):- Let 1 2, ,........, nX X X be a n  dimensional continuous random variable with 

probability distribution function 1 2, ,........, nf x x x , 1,2,.....,ix R i n , where R

=set of all real numbers. 

Step (2):- Let 1 2, ,........, nX X X be another n  dimensional continuous random 

variable (which is independent of 1 2, ,........, nX X X ) with probability distribution 

function 1 2, ,......., ng x x x , 1,2,.....,ix R i n , where R =set of all real numbers. 

Step (3):- Let 1 2
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Step (4):- Let 0 1, 1,2,.....,iR i n , be n   random numbers. 

Step (5):- Set iX  in terms of iR , 1,2,....,i n  depending on the expression obtained 

for the ratio 1 2
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n
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f X
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Step (6):- If
1 2

1
1 2
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,X ,........,X

n n

i

i
n

f X
R

kg X
, then  set 

1 2 1 2, ,........, , ,........,n nX X X X X X select the continuous random variable

1 2, ,........, nX X X ; otherwise reject the variable 1 2, ,........, nX X X  and repeat 

the process from step (1). 

 The probability that the continuous random variable 1 2, ,........, nX X X  is selected 

is
1

k
. 

The number of iterations required to select 1 2, ,........, nX X X  is k . 
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It may be noted that 
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To prove that the probability for the selection of 1 2, ,........, nX X X is 
1

k
’ 

Proof: -    
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Hence the proof. 

Since the probability of selection (i.e. success) is 
1

k
,the number of iterations needed 

will follow a geometric distribution with 
1

p
k

.So, on average it will take k  

iterations to generate a number. 

    

 

III. APPLICATION TO N-DIMENSIONAL NORMAL DISTRIBUTION. 

Two dimensional normal distribution is given by  
2
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Here 1 2, ,........, nf x x x  is the target distribution. 

Let  
1

1 2( , ,........, ) , 0, 1,2,.... .
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n ig x x x e x i n  be the proposal 

distribution.                                                                                                   (2)  
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With the help of differential calculus we can show that 1 2( , ,......., )nh x x x  attains 

maximum at 1,1,.....,1
n times

and the maximum value of 1 2( , ,......., )nh x x x  is 
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Selection-Rejection Methodology for the n-dimensional distribution is as follows 

Step (1):- Let 1 2, ,......., nX X X be n  dimensional continuous random variable with 

probability distribution function 1 2, ,......., nf x x x , 1,2,....,ix R i n , where R =set 

of all real numbers. 

Step (2):- Let 1 2, ,......., nX X X be another n  dimensional continuous random 

variable with probability distribution function 1 2, ,......., ng x x x , 1,2,....,ix R i n , 

where R =set of all real numbers. 

Step (3):-Let  0 1, 1,2,....,iR i n  , be n  random numbers. 

Step (4):- Set 1 2ln( ), 1,2,.....,i iX R i n  , 

Step (5):-If  
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X
R ,then  set 

1 2 1 2, ,........, , ,........,n nX X X X X X  and select 1 2, ,......, nX X X ;otherwise 

reject   1 2, ,......, nX X X  and repeat the process from Step(1).\ 

 

 

Conclusion 

Selection-Rejection Methodology is valid for any dimension of  continuous random 

variable.In this method we approximate the target function to proposal function so 

that after a number of successive iterations the proposal function becomes almost 

equal to target function and proposal function is selected. 
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