A New Theorem for the Prime Counting Function in Number Theory

Ali Abtan
Belmont, Ave, West, Kitchener,
Ontario, Canada.
E-mail : abtanali40@yahoo.co.uk

Abstract

In this paper, I am presenting (A new formula and the proof for it's correctness for the prime counting function). The prime counting function find how many prime numbers under any magnitude (Prime counting function); A prime number can be divided by 1 and itself and they are $(2,3,5,7,11,13,17, \ldots)$. The prime counting function was conjectured in the end of the 18th century by Gauss and by Legendre to be approximately (not the real value) $\mathrm{X} / \operatorname{In}(\mathrm{x})$, but in this paper I am presenting the real formula and the proof it's correctness for the prime counting function.

AMS subject classification: 11A41, 11N05, 11A25.
Keywords: Distribution of the prime numbers (prime counting function); Number Theory.

1. Introduction

The main problem in Number Theory is to understand the distribution of Prime numbers. Let $\pi(x)$ denote the Prime counting function,defined as the number of primes less than or equal to X . Many deep problems in analytic number theory can be expressed in terms of the prime counting function $\pi(x)$. For example (the Riemann Hypothesis). So what Gauss and Legendre approximation solution $\mathrm{X} / \operatorname{In}(\mathrm{x})$ in the sense that

$$
\pi(x) \sim \frac{X}{\log X} \text { as } X \rightarrow+\infty .
$$

This statement is the prime number theorem. So till now their is no formula for the prime counting function $\pi(x)$ as you see from the end of 18th century till now, in this
paper I am presenting the real formula and the proof for it's correctness for the prime counting function $\pi(x)$.

Theorem 1.1. (For the (prime counting function).) I will present now the the prime counting function which is related to the sum of the prime numbers under or equal to (X), and the sum of $\pi(n)$:

First let: $\pi(x)$: Prime counting function.
X : Any positive integer
n : Any positive integer $n \geq 2$
P : prime numbers
The Prime counting function

$$
\pi(x)=\frac{\sum_{p=2}^{p \leq x} p+\sum_{n=2}^{x-1} \pi(n)}{X}
$$

$\sum_{p=2}^{p \leq X} p$: the sum of prime numbers under or equal to $\mathrm{x} \sum_{n=2}^{n=x-1} \pi(n)$: the sum of $\pi(n)$.
And the first few prime numbers: $2,3,5,7,11,13,17,19,23, \ldots)$. And the first few values of $\pi(n)$, for example $n=1$ to $n=10$ they are $:(0,1,2,2,3,3,4,4,4,4)$.

Proof theorem 1.1. For this (formula) which is:

$$
\pi(x)=\frac{\sum_{p=2}^{p \leq x} p+\sum_{n=2}^{x-1} \pi(n)}{X}
$$

Step 1: $\pi(2)=1$
Step 2: Assume true for all $n \leq N$
Step 3: Proven for $(N+1)$
Step 4: Assume $(N+1)$ is a prime
Step 5: As we assume $(N+1)$ is a prime that's mean $\pi(N+1)-\pi(N)=1$.

$$
\begin{gathered}
\pi(N+1)=\frac{\sum_{p=2}^{N+1} p+\sum_{n=2}^{N} \pi(n)}{N+1} \\
\pi(N+1)=\frac{(N+1)+\sum_{p=2}^{N} p+\pi(N)+\sum_{n=2}^{N-1} \pi(n)}{N+1}
\end{gathered}
$$

$$
\pi(N+1)=\frac{N+1}{N+1}+\frac{\pi(N)}{N+1}+\frac{\sum_{p=2}^{N} p+\sum_{n=2}^{N-1} \pi(n)}{(N+1)}
$$

By multiplying the formula with $\left[\frac{N}{N}\right]$

$$
\begin{gathered}
\pi(N+1)=1+\frac{\pi(N)}{N+1}+\frac{\sum_{p=2}^{N} p+\sum_{n=2}^{N-1} \pi(n)}{(N+1)} *\left(\frac{N}{N}\right) \\
\pi(N+1)=1+\frac{\pi(N)}{N+1}+\left(\left(\frac{\sum_{p=2}^{N} p+\sum_{n=2}^{N-1} \pi(n)}{(N+1)} * \frac{N}{N}\right)\right) \\
\pi(N+1)=1+\frac{\pi(N)}{N+1}+\left(\left(\frac{\sum_{p=2}^{N} p+\sum_{n=2}^{N-1} \pi(n)}{N} * \frac{N}{N+1}\right)\right)
\end{gathered}
$$

And

$$
\pi(N)=\frac{\sum_{p=2}^{N} p+\sum_{n=2}^{N-1} \pi(n)}{N}
$$

So we will have:

$$
\begin{gathered}
\pi(N+1)=1+\frac{\pi(N)}{N+1}+\left(\left(\pi(N) * \frac{N}{(N+1)}\right)\right) \\
\pi(N+1)=1+\frac{\pi(N)+\pi(N) * N}{(N+1)} \\
\pi(N+1)=1+\frac{\pi(N) *(N+1)}{(N+1)} \\
\pi(N+1)=1+\pi(N) \\
\pi(N+1)-\pi(N)=1
\end{gathered}
$$

Example for the theorem (1.1):

$$
\pi(x)=\frac{\sum_{p=2}^{p \leq x} p+\sum_{n=2}^{x-1} \pi(n)}{X}
$$

For $X=10$. The prime numbers under 10 are $(2,3,5,7)$. The first values of $\pi(n)$ are ($0,1,2,2,3,3,4,4,4,4$).

$$
\begin{gathered}
\pi(10)=\frac{(2+3+5+7)+(\pi(2)+\pi(3)+\pi(4)+\pi(5)+\pi(6)+\pi(7)+\pi(8)+\pi(9))}{10} \\
\pi(10)=\frac{(17)+(1+2+2+3+3+4+4+4)}{10} \\
\pi(10)=\frac{(17+23)}{10} \\
\pi(10)=\frac{40}{10} \\
\pi(10)=4
\end{gathered}
$$

2. Results

The prime counting function has many applications in Number Theory ; and it's related to one of the famous problem in mathematics; for example; (The Riemann Hypothesis) because the prime counting function is related to Riemann's function, and it has many thousands of applications across science and mathematics.

References

[1] Weisstein, Eric W., "Prime Counting Function", MathWorld. "How many primes are there?". Chris K. Caldwell. Retrieved 2008-12-02.
[2] Dickson, Leonard Eugene (2005). History of the Theory of Numbers, Vol. I: Divisibility and Primality. Dover Publications. ISBN 0-486-44232-2.
[3] Ireland, Kenneth; Rosen, Michael (1998). A Classical Introduction to Modern Number Theory (Second ed.). Springer. ISBN 0-387-97329-X.
[4] Granville, Andrew (1995). "Harald Cramer and the distribution of prime numbers". Scandinavian Actuarial Journal 1:12-28.
[5] J.B. Rosser and L. Schoenfeld, Approximate Formulas for some Functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.

