Root Square Mean Labeling of Subdivision of Some More Graphs

S.S.Sandhya1 S.Somasundaram2 S.Anusa3

1Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai: 629003 Nagercoil. Email: ssssandhya2009@gmail.com

2Department of Mathematics, Manonmaniam Sundaranar University Tirunelveli: 627012. Email: somutvl@gmail.com

3Department of Mathematics, Arunachala College of Engineering for Women, Vellichanthai-629203 Nagercoil. Email: anu12343s@gmail.com

Abstract

A graph $G = (V,E)$ with p vertices and q edges is called a Root Square Mean graph if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1, 2, \ldots, q + 1$ in such a way that when each edge $e = uv$ is labeled with $f(e) = uv = \sqrt{\frac{f(u)^2 + f(v)^2}{2}}$ or $\sqrt{\frac{f(u)^2 + f(v)^2}{2}}$, then the edge labels are distinct. In this case f is called Root Square Mean Labeling of G. In this paper we prove that subdivision of some graphs are Root Square Mean graphs.

Key Words: Graph, Root Square Mean graph, Triangular Snake, Quadrilateral Snake, Alternate Triangular Snake, Alternate Quadrilateral Snake.

1. Introduction

All graphs in this paper are finite, simple, and undirected graph $G = (V,E)$ with p vertices and q edges. For all detailed survey of graph labeling we refer to Gallian [1]. For all other standard terminology and notations we follow Harary [2]. Root Square Mean labeling was introduced by S.S.Sandhya, S.Somasundaram, and S.Anusa in [3] and studied their behavior in [4], [5], [6], [7], [8], [9], [10]. In this paper we prove that subdivision of some graphs are Root Square Mean graphs. The following definitions and theorems are necessary for our present study.
Definition 1.1: A graph $G = (V, E)$ with p vertices and q edges is called a Root Square Mean graph if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1, 2, \ldots, q + 1$ in such a way that when each edge $e = uv$ is labeled with $f(e = uv) = \left[\sqrt{\frac{f(u)^2 + f(v)^2}{2}} \right]$ or $\left[\sqrt{\frac{f(u)^2 + f(v)^2}{2}} \right]$, then the edge labels are distinct. In this case f is called Root Square Mean Labeling of G.

Definition 1.2: A Triangular Snake T_n is obtained from a path $u_1u_2 \cdots u_n$ by joining u_i and u_{i+1} to a new vertex v_i, $1 \leq i \leq n - 1$.

Definition 1.3: An Alternate Triangular Snake $A(T_n)$ is obtained from a path $u_1u_2 \cdots u_n$ by joining u_i and u_{i+1} (Alternatively) to a new vertex v_i.

Definition 1.4: A Quadrilateral Snake Q_n is obtained from a path $u_1u_2 \cdots u_n$ by joining u_i and u_{i+1} to two new vertices v_i and w_i, $1 \leq i \leq n - 1$ respectively and then joining v_i and w_i.

Definition 1.5: An Alternate Quadrilateral Snake $A(Q_n)$ is obtained from a path $u_1u_2 \cdots u_n$ by joining u_i and u_{i+1} (Alternatively) to new vertices v_i and w_i.

Theorem 1.6: A Triangular snake T_n is a Root Square Mean graph.

Theorem 1.7: Alternate Triangular Snake $A(T_n)$ is a Root Square Mean graph.

Theorem 1.8: A Quadrilateral Snake Q_n is a Root Square Mean graph.

Theorem 1.9: Alternate Quadrilateral Snake $A(Q_n)$ is a Root Square Mean graph.

2. Main Results

Theorem 2.1: $S(T_n)$ is a Root Square Mean graph.

Proof: Let $u_1u_2 \cdots u_n$ be a path of length n. Let T_n be the triangular snake obtained by joining u_i and u_{i+1} to a new vertex v_i, $1 \leq i \leq n - 1$. Let us subdivide the edges of T_n. Here we consider the following cases.

Case(1): G is obtained by subdividing each edge of the path.

Let $t_1, t_2, \ldots, t_{n-1}$ be the vertices which subdivide the edge u_iu_{i+1}.

Define a function $f: V(G) \rightarrow \{1, 2, \ldots, q + 1\}$ by

- $f(u_i) = 4i - 3, 1 \leq i \leq n$
- $f(v_i) = 4i - 2, 1 \leq i \leq n - 1$
- $f(t_i) = 4i, 1 \leq i \leq n - 1$
Then the edges are labeled as
\[f(u_iv_i) = 4i - 3, 1 \leq i \leq n - 1 \]
\[f(u_it_i) = 4i - 2, 1 \leq i \leq n - 1 \]
\[f(t_iu_{i+1}) = 4i, 1 \leq i \leq n - 1 \]
\[f(v_iu_{i+1}) = 4i - 1, 1 \leq i \leq n - 1 \]

Then we get distinct edge labels. Hence \(f \) is a Root Square Mean labeling of \(G \).

The labeling pattern of \(S(T_5) \) is shown below.

![Figure 1](image1)

Case(2): \(G \) is obtained by subdividing the edges \(u_iv_i \) and \(u_{i+1}v_i \).
Let \(x_i \) and \(y_i \) be the two vertices which subdivide the edges \(u_iv_i \) and \(u_{i+1}v_i, 1 \leq i \leq n - 1 \) respectively. Define a function \(f:V(G) \rightarrow \{1,2,\ldots,q + 1\} \) by
\[f(u_i) = 5i - 4, 1 \leq i \leq n \]
\[f(v_i) = 5i - 2, 1 \leq i \leq n - 1 \]
\[f(x_i) = 5i - 3, 1 \leq i \leq n - 1 \]
\[f(y_i) = 5i - 1, 1 \leq i \leq n - 1 \]

Then the edges are labeled as
\[f(u_ix_i) = 5i - 4, 1 \leq i \leq n - 1 \]
\[f(x_iv_i) = 5i - 3, 1 \leq i \leq n - 1 \]
\[f(v_iy_i) = 5i - 2, 1 \leq i \leq n - 1 \]
\[f(y_iu_{i+1}) = 5i, 1 \leq i \leq n - 1 \]
\[f(u_iu_{i+1}) = 5i - 1, 1 \leq i \leq n - 1 \]

Then we get distinct edge labels. Hence \(f \) is a Root Square Mean labeling of \(G \).

The labeling pattern of \(S(T_5) \) is shown below.

![Figure 2](image2)
Case (3): \(G \) is obtained by subdividing all the edges of \(T_n \).
Let \(x_i, y_i \) and \(t_i \) be the vertices which subdivide the edges \(u_i v_i, v_i u_{i+1} \) and \(u_i u_{i+1} \) respectively. Define a function \(f: V(G) \to \{1, 2, \ldots, q + 1\} \) by
\[
\begin{align*}
f(u_i) &= 6i - 5, 1 \leq i \leq n \\
f(v_i) &= 6i - 3, 1 \leq i \leq n - 1 \\
f(x_i) &= 6i - 4, 1 \leq i \leq n - 1 \\
f(y_i) &= 6i - 1, 1 \leq i \leq n - 1 \\
f(t_i) &= 6i - 2, 1 \leq i \leq n - 1
\end{align*}
\]

Then the edges are labeled as
\[
\begin{align*}
f(u_i t_i) &= 6i - 3, 1 \leq i \leq n - 1 \\
f(u_i x_i) &= 6i - 5, 1 \leq i \leq n - 1 \\
f(x_i v_i) &= 6i - 4, 1 \leq i \leq n - 1 \\
f(t_i u_{i+1}) &= 6i - 1, 1 \leq i \leq n - 1 \\
f(v_i y_i) &= 6i - 2, 1 \leq i \leq n - 1 \\
f(y_i u_{i+1}) &= 6i - 1, 1 \leq i \leq n - 1
\end{align*}
\]

Then we get distinct edge labels. Hence \(f \) is a Root Square Mean labeling of \(G \).

The labeling pattern of \(S(T_5) \) is shown below.

Theorem 2.2: \(S(Q_n) \) is a Root Square Mean graph.

Proof: Let \(u_1 u_2 \cdots u_n \) be a path \(P_n \). Join \(u_i \) and \(u_{i+1} \) to new vertices \(v_i \) and \(w_i \), \(1 \leq i \leq n - 1 \) respectively and then joining \(v_i \) and \(w_i \). The resulting graph is a Quadrilateral snake \(Q_n \). Let \(G \) be the graph obtained by subdividing the edges of \(Q_n \). Here we consider the following cases.

Case (1): \(G \) is obtained by subdividing the edges of the path.
Let \(t_1, t_2, \cdots, t_{n-1} \) be the vertices which subdivide the edge \(u_i u_{i+1}, 1 \leq i \leq n - 1 \).
Define a function \(f: V(G) \to \{1, 2, \ldots, q + 1\} \) by
\[
\begin{align*}
f(u_i) &= 5i - 4, 1 \leq i \leq n \\
f(v_i) &= 5i - 3, 1 \leq i \leq n - 1 \\
f(w_i) &= 5i - 2, 1 \leq i \leq n - 1 \\
f(t_i) &= 5i - 1, 1 \leq i \leq n - 1
\end{align*}
\]

Then the edges are labeled as
Root Square Mean Labeling of Subdivision of Some More Graphs

\[f(u_i v_i) = 5i - 4, 1 \leq i \leq n - 1 \]
\[f(v_i w_i) = 5i - 3, 1 \leq i \leq n - 1 \]
\[f(w_i u_{i+1}) = 5i - 1, 1 \leq i \leq n - 1 \]
\[f(u_i t_i) = 5i - 2, 1 \leq i \leq n - 1 \]
\[f(t_i u_{i+1}) = 5i, 1 \leq i \leq n - 1 \]

Then the edge labels are distinct. Hence \(G \) is a Root Square Mean graph.

The labeling pattern of \(S(Q_5) \) is shown below.

Case(2): \(G \) is obtained by subdividing all the edges of \(Q_n \).

Let \(t_i, x_i, s_i, y_i \) be the vertices which subdivide the edges \(u_i u_{i+1}, u_i v_i, v_i w_i \) and \(w_i u_{i+1} \) respectively. Define a function \(f: V(G) \to \{1, 2, \ldots, q + 1\} \) by

\[f(u_i) = 8i - 7, 1 \leq i \leq n \]
\[f(x_i) = 8i - 6, 1 \leq i \leq n - 1 \]
\[f(v_i) = 8i - 5, 1 \leq i \leq n - 1 \]
\[f(s_i) = 8i - 4, 1 \leq i \leq n - 1 \]
\[f(w_i) = 8i - 3, 1 \leq i \leq n - 1 \]
\[f(y_i) = 8i - 2, 1 \leq i \leq n - 1 \]
\[f(t_i) = 8i, 1 \leq i \leq n - 1 \]

Then the edges are labeled as

\[f(u_i x_i) = 8i - 7, 1 \leq i \leq n - 1 \]
\[f(x_i v_i) = 8i - 6, 1 \leq i \leq n - 1 \]
\[f(v_i s_i) = 8i - 5, 1 \leq i \leq n - 1 \]
\[f(s_i w_i) = 8i - 4, 1 \leq i \leq n - 1 \]
\[f(w_i y_i) = 8i - 3, 1 \leq i \leq n - 1 \]
\[f(y_i u_{i+1}) = 8i - 2, 1 \leq i \leq n - 1 \]
\[f(u_{i+1} t_i) = 8i, 1 \leq i \leq n - 1 \]
\[f(t_i u_i) = 8i - 3, 1 \leq i \leq n - 1 \]

Then the edge labels are distinct. Hence \(G \) is a Root Square Mean graph.

The labeling pattern of \(S(Q_4) \) is shown below.
From case(1), case(2), it is clear that, $S(Q_n)$ is a Root Square Mean graph.

Theorem 2.3: $S(A(T_n))$ is a Root Square Mean graph.

Proof: Let $u_1u_2\cdots u_n$ be the path. Let $A(T_n)$ be the alternate triangular snake obtained by joining u_i and u_{i+1} (Alternatively) to a new vertex $v_i, 1 \leq i \leq n - 1$. Let G be the graph obtained by subdividing the edges of $A(T_n)$. Here we consider two cases

Case(1): If the triangle starts from u_1.
Let t_i, x_i, y_i be the vertices which subdivide the edges $u_iu_{i+1}, u_iv_i, v_iu_{i+1}$ respectively.
Here we have to consider two sub cases

Sub case(1.a): If n is odd
Define a function $f: V(G) \rightarrow \{1, 2, \ldots, q + 1\}$ by
$$f(u_i) = \begin{cases}
4i - 3, & i = 1, 3, 5, \ldots, n \\
4i - 1, & i = 2, 4, 6, \ldots, n - 1
\end{cases}$$
$$f(v_i) = 8i - 5, 1 \leq i \leq \frac{n - 1}{2}$$
$$f(x_i) = 8i - 6, 1 \leq i \leq \frac{n - 1}{2}$$
$$f(y_i) = 8i - 4, 1 \leq i \leq \frac{n - 1}{2}$$
$$f(t_i) = \begin{cases}
4i + 2, & i = 1, 3, 5, \ldots, n - 2 \\
4i, & i = 2, 4, 6, \ldots, n - 1
\end{cases}$$

Then the edges are labeled as
$$f(u_it_i) = \begin{cases}
4i, & i = 1, 3, 5, \ldots, n - 2 \\
4i - 1, & i = 2, 4, 6, \ldots, n - 1
\end{cases}$$
$$f(t_iu_{i+1}) = \begin{cases}
4i + 2, & i = 1, 3, 5, \ldots, n - 2 \\
4i, & i = 2, 4, 6, \ldots, n - 1
\end{cases}$$
$$f(u_{2i-1}x_i) = 8i - 7, 1 \leq i \leq \frac{n - 1}{2}$$
$$f(x_iv_i) = 8i - 6, 1 \leq i \leq \frac{n - 1}{2}$$
Sub Case (1.b): If \(n \) is even
Define a function \(f: V(G) \rightarrow \{1,2,\ldots,q+1\} \) by

\[
\begin{align*}
\text{If } n \text{ is even, then define } f & : V(G) \rightarrow \{1,2,\ldots,q+1\} \text{ by } \\
f(u_i) &= \begin{cases}
4i - 3, & i = 1,3,5,\ldots,n-1 \\
4i - 1, & i = 2,4,6,\ldots,n \n\end{cases} \\
f(v_i) &= 8i - 5, 1 \leq i \leq \frac{n-1}{2} \\
f(x_i) &= 8i - 6, 1 \leq i \leq \frac{n}{2} \\
f(y_i) &= 8i - 4, 1 \leq i \leq \frac{n}{2} \\
f(t_i) &= \begin{cases}
4i + 2, & i = 1,3,5,\ldots,n-1 \\
4i, & i = 2,4,6,\ldots,n-2 \n\end{cases}
\end{align*}
\]

Then the edges are labeled as

\[
\begin{align*}
\text{If } n \text{ is even, then define } f & : V(G) \rightarrow \{1,2,\ldots,q+1\} \text{ by } \\
f(u_iu_i+1) &= \begin{cases}
4i - 1, & i = 2,4,6,\ldots,n-2 \\
4i, & i = 2,4,6,\ldots,n-2 \n\end{cases} \\
f(u_{2i-1}x_i) &= 8i - 7, 1 \leq i \leq \frac{n}{2} \\
f(x_iu_i) &= 8i - 6, 1 \leq i \leq \frac{n}{2} \\
f(v_iu_i) &= 8i - 5, 1 \leq i \leq \frac{n}{2} \\
f(y_iu_{2i}) &= 8i - 3, 1 \leq i \leq \frac{n}{2}
\end{align*}
\]

Then the edge labels are distinct. Hence \(G \) is a Root Square Mean graph. The labeling pattern of \(S(A(T_6)) \) is shown below.
Figure 7

Case(2) If the triangle starts from u_2.
Let t_i, x_i, y_i be the vertices which subdivide the edges $u_iu_{i+1}, u_iv_i, v_iu_i$ respectively.
Here we have to consider two sub cases

Sub case(2.a): If n is odd
Define a function $f: V(G) \to \{1, 2, \ldots, q + 1\}$ by
\[
\begin{align*}
 f(u_i) &= \begin{cases}
 4i - 3, & i = 1, 3, 5, \ldots, n \\
 4i - 5, & i = 2, 4, 6, \ldots, n - 1
\end{cases} \\
 f(v_i) &= 8i - 3, 1 \leq i \leq \frac{n-1}{2} \\
 f(x_i) &= 8i - 4, 1 \leq i \leq \frac{n-1}{2} \\
 f(y_i) &= 8i - 2, 1 \leq i \leq \frac{n-1}{2} \\
 f(t_i) &= \begin{cases}
 4i - 2, & i = 1, 3, 5, \ldots, n - 2 \\
 4i, & i = 2, 4, 6, \ldots, n - 1
\end{cases}
\end{align*}
\]

Then the edges are labeled as
\[
\begin{align*}
 f(u_i t_i) &= \begin{cases}
 4i - 3, & i = 1, 3, 5, \ldots, n - 2 \\
 4i - 2, & i = 2, 4, 6, \ldots, n - 1
\end{cases} \\
 f(t_i u_{i+1}) &= \begin{cases}
 4i - 2, & i = 1, 3, 5, \ldots, n - 2 \\
 4i, & i = 2, 4, 6, \ldots, n - 1
\end{cases} \\
 f(u_{2i} x_i) &= 8i - 5, 1 \leq i \leq \frac{n-1}{2} \\
 f(x_i v_i) &= 8i - 4, 1 \leq i \leq \frac{n-1}{2} \\
 f(v_i y_i) &= 8i - 3, 1 \leq i \leq \frac{n-1}{2} \\
 f(y_i u_{2i+1}) &= 8i - 1, 1 \leq i \leq \frac{n-1}{2}
\end{align*}
\]

Then the edge labels are distinct. Hence G is a Root Square Mean graph.
The labeling pattern of $S(A(T_5))$ is shown below.
Sub case(2.b): If \(n \) is even

Define a function \(f: V(G) \to \{1,2,...,q+1\} \) by

\[
f(u_i) = \begin{cases}
4i - 3, & i = 1,3,5,..., n-1 \\
4i - 5, & i = 2,4,6,..., n
\end{cases}
\]

\[
f(v_i) = 8i - 3, 1 \leq i \leq \frac{n - 2}{2}
\]

\[
f(x_i) = 8i - 4, 1 \leq i \leq \frac{n - 2}{2}
\]

\[
f(y_i) = 8i - 2, 1 \leq i \leq \frac{n - 2}{2}
\]

\[
f(t_i) = \begin{cases}
4i - 2, & i = 1,3,5,..., n-1 \\
4i, & i = 2,4,6,..., n-2
\end{cases}
\]

Then the edges are labeled as

\[
f(u_i t_i) = \begin{cases}
4i - 3, & i = 1,3,5,..., n-1 \\
4i - 2, & i = 2,4,6,..., n-2
\end{cases}
\]

\[
f(t_i u_{i+1}) = \begin{cases}
4i - 2, & i = 1,3,5,..., n-1 \\
4i, & i = 2,4,6,..., n-2
\end{cases}
\]

\[
f(u_{2i} x_i) = 8i - 5, 1 \leq i \leq \frac{n - 2}{2}
\]

\[
f(x_i v_i) = 8i - 4, 1 \leq i \leq \frac{n - 2}{2}
\]

\[
f(v_i y_i) = 8i - 3, 1 \leq i \leq \frac{n - 2}{2}
\]

\[
f(y_1 u_{2i+1}) = 8i - 1, 1 \leq i \leq \frac{n - 2}{2}
\]

Then the edge labels are distinct. Hence \(G \) is a Root Square Mean graph.

The labeling pattern of \(S(A(T_6)) \) is shown below.
From case(1) and case(2), $S(A(T_n))$ is a Root Square Mean graph.

Theorem 2.4: $S(A(Q_n))$ is a Root Square Mean graph.

Proof: Let $u_1u_2\cdots u_n$ be the path. $A(Q_n)$ is obtained by joining u_i and u_{i+1} (Alternatively) to two new vertices v_i and w_i respectively and then joining v_i and w_i. Let G be the graph obtained by subdividing the edges of $A(Q_n)$. Here we consider two cases.

Case(1): If the Quadrilateral snake starts from u_1.
Let t_i,x_i,y_i,s_i be the vertices which subdivide the edges $u_iu_{i+1},u_iv_i,w_iu_{i+1},v_iw_i$ respectively.

Here we have to consider two sub cases.

Sub case(1.a): If n is odd.
Define a function $f: V(G) \rightarrow \{1,2,\ldots,q+1\}$ by

$$f(u_i) = \begin{cases}
5i - 4, & i = 1,3,5,\ldots,n \\
5i - 1, & i = 2,4,6,\ldots,n-1
\end{cases}$$

$$f(v_i) = 10i - 7, 1 \leq i \leq \frac{n-1}{2}$$

$$f(w_i) = 10i - 5, 1 \leq i \leq \frac{n-1}{2}$$

$$f(x_i) = 10i - 8, 1 \leq i \leq \frac{n-1}{2}$$

$$f(y_i) = 10i - 4, 1 \leq i \leq \frac{n-1}{2}$$

$$f(s_i) = 10i - 6, 1 \leq i \leq \frac{n-1}{2}$$

$$f(t_i) = \begin{cases}
5i + 2, & i = 1,3,5,\ldots,n-2 \\
5i, & i = 2,4,6,\ldots,n-1
\end{cases}$$

Then the edges are labeled as

$$f(u_it_i) = \begin{cases}
5i, & i = 1,3,5,\ldots,n-2 \\
5i - 1, & i = 2,4,6,\ldots,n-1
\end{cases}$$

$$f(t_iu_{i+1}) = \begin{cases}
5i + 3, & i = 1,3,5,\ldots,n-2 \\
5i, & i = 2,4,6,\ldots,n-1
\end{cases}$$

$$f(u_{2i-1}x_i) = 10i - 9, 1 \leq i \leq \frac{n-1}{2}$$

$$f(x_iv_i) = 10i - 8, 1 \leq i \leq \frac{n-1}{2}$$

$$f(v_is_i) = 10i - 7, 1 \leq i \leq \frac{n-1}{2}$$

$$f(s_iw_i) = 10i - 6, 1 \leq i \leq \frac{n-1}{2}$$

$$f(w_iy_i) = 10i - 4, 1 \leq i \leq \frac{n-1}{2}$$
Root Square Mean Labeling of Subdivision of Some More Graphs

\[f(y_i u_{2i}) = 10i - 3, 1 \leq i \leq \frac{n - 1}{2} \]

Then the edge labels are distinct. Hence \(G \) is a Root Square Mean graph. The labeling pattern of \(S(A(Q_5)) \) is shown below.

Figure 10

Sub case (1.b) If \(n \) is even

Define a function \(f: V(G) \rightarrow \{1, 2, \ldots, q + 1\} \) by

\[
\begin{align*}
 f(u_i) &= \begin{cases}
 5i - 4, & i = 1, 3, 5, \ldots, n - 1 \\
 5i - 1, & i = 2, 4, 6, \ldots, n
 \end{cases} \\
 f(v_i) &= 10i - 7, 1 \leq i \leq \frac{n}{2} \\
 f(w_i) &= 10i - 5, 1 \leq i \leq \frac{n}{2} \\
 f(x_i) &= 10i - 8, 1 \leq i \leq \frac{n}{2} \\
 f(y_i) &= 10i - 4, 1 \leq i \leq \frac{n}{2} \\
 f(s_i) &= 10i - 6, 1 \leq i \leq \frac{n}{2} \\
 f(t_i) &= \begin{cases}
 5i + 2, & i = 1, 3, 5, \ldots, n - 1 \\
 5i, & i = 2, 4, 6, \ldots, n - 2
 \end{cases}
\]

Then the edges are labeled as

\[
\begin{align*}
 f(u_i t_i) &= \begin{cases}
 5i, & i = 1, 3, 5, \ldots, n - 1 \\
 5i - 1, & i = 2, 4, 6, \ldots, n - 2
 \end{cases} \\
 f(t_i u_{i+1}) &= \begin{cases}
 5i + 3, & i = 1, 3, 5, \ldots, n - 1 \\
 5i, & i = 2, 4, 6, \ldots, n - 2
 \end{cases} \\
 f(u_{2i-1} x_i) &= 10i - 9, 1 \leq i \leq \frac{n}{2} \\
 f(x_i v_i) &= 10i - 8, 1 \leq i \leq \frac{n}{2} \\
 f(v_i s_i) &= 10i - 7, 1 \leq i \leq \frac{n}{2} \\
 f(s_i w_i) &= 10i - 6, 1 \leq i \leq \frac{n}{2} \\
 f(w_i y_i) &= 10i - 4, 1 \leq i \leq \frac{n}{2}
\end{align*}
\]
$f(y_iu_{2i}) = 10i - 3, 1 \leq i \leq \frac{n}{2}$

Then the edge labels are distinct. Hence G is a Root Square Mean graph.

The labeling pattern of $S(A(Q_6))$ is shown below.

Figure 11

Case(2): If the triangle starts from u_2.

Let t_i, x_i, y_i, s_i be the vertices which subdivide the edges $u_iu_{i+1}, u_iv_i, w_iu_{i+1}, v_iw_i$ respectively.

Here we consider two sub cases

Sub case(1.a): If n is odd.

Define a function $f: V(G) \rightarrow \{1,2,...,q+1\}$ by

$f(u_i) = \begin{cases} 5i - 4, & i = 1,3,5,...,n \\ 5i - 7, & i = 2,4,6,...,n-1 \end{cases}$

$f(v_i) = 10i - 5, 1 \leq i \leq \frac{n-1}{2}$

$f(w_i) = 10i - 3, 1 \leq i \leq \frac{n-1}{2}$

$f(x_i) = 10i - 6, 1 \leq i \leq \frac{n-1}{2}$

$f(y_i) = 10i - 2, 1 \leq i \leq \frac{n-1}{2}$

$f(s_i) = 10i - 4, 1 \leq i \leq \frac{n-1}{2}$

$f(t_i) = \begin{cases} 5i - 3, & i = 1,3,5,...,n-2 \\ 5i - 1, & i = 2,4,6,...,n-1 \end{cases}$

Then the edges are labeled as

$f(t_iu_{i+1}) = \{5i - 3, i = 1,3,5,...,n-2 \}$

$f(u_it_i) = 5i - 4, 1 \leq i \leq n-1$

$f(u_{2i}x_i) = 10i - 7, 1 \leq i \leq \frac{n-1}{2}$

$f(x_iv_i) = 10i - 6, 1 \leq i \leq \frac{n-1}{2}$

$f(v_is_i) = 10i - 5, 1 \leq i \leq \frac{n-1}{2}$
Root Square Mean Labeling of Subdivision of Some More Graphs

\[\begin{align*}
f(s_iw_i) &= 10i - 3, 1 \leq i \leq \frac{n - 1}{2} \\
f(w_iy_i) &= 10i - 2, 1 \leq i \leq \frac{n - 1}{2} \\
f(y_iu_{2i+1}) &= 10i - 1, 1 \leq i \leq \frac{n - 1}{2}
\end{align*}\]

Then the edge labels are distinct. Hence \(G\) is a Root Square Mean graph.

The labeling pattern of \(S(A(Q_5))\) is shown below.

![Figure 12](image.png)

Sub case(1.a): If \(n\) is even.

Define a function \(f: V(G) \rightarrow \{1,2,\ldots,q+1\}\) by

\[\begin{align*}
f(u_i) &= \begin{cases}
5i - 4, & i = 1,3,5,\ldots,n-1 \\
5i - 7, & i = 2,4,6,\ldots,n
\end{cases} \\
f(v_i) &= 10i - 5, 1 \leq i \leq \frac{n - 2}{2} \\
f(w_i) &= 10i - 3, 1 \leq i \leq \frac{n - 2}{2} \\
f(x_i) &= 10i - 6, 1 \leq i \leq \frac{n - 2}{2} \\
f(y_i) &= 10i - 2, 1 \leq i \leq \frac{n - 2}{2} \\
f(s_i) &= 10i - 4, 1 \leq i \leq \frac{n - 2}{2} \\
f(t_i) &= \begin{cases}
5i - 3, & i = 1,3,5,\ldots,n-1 \\
5i - 1, & i = 2,4,6,\ldots,n-2
\end{cases}
\end{align*}\]

Then the edges are labeled as

\[\begin{align*}
f(t_iu_{i+1}) &= \begin{cases}
5i - 3, & i = 1,3,5,\ldots,n-1 \\
5i, & i = 2,4,6,\ldots,n-2
\end{cases} \\
f(u_it_i) &= 5i - 4, 1 \leq i \leq n - 1 \\
f(u_{2i}x_i) &= 10i - 7, 1 \leq i \leq \frac{n - 2}{2} \\
f(x_iv_i) &= 10i - 6, 1 \leq i \leq \frac{n - 2}{2} \\
f(v_is_i) &= 10i - 5, 1 \leq i \leq \frac{n - 2}{2}
\end{align*}\]
\[f(s_iw_i) = 10i - 3, 1 \leq i \leq \frac{n-2}{2} \]
\[f(w_iy_i) = 10i - 2, 1 \leq i \leq \frac{n-2}{2} \]
\[f(y_iw_{2i+1}) = 10i - 1, 1 \leq i \leq \frac{n-2}{2} \]

Then the edge labels are distinct. Hence \(G \) is a Root Square Mean graph.

The labeling pattern of \(S(A(Q_6)) \) is shown below.

From case(1) and case(2), \(S(A(Q_n)) \) is a Root Square Mean graph.

Reference:

