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Abstract

A graph G=(V,E) with p vertices and q edges is said to admit square
difference labeling, if there exists a bijection f: V(G)—{ 0,1, ...., p-1}
such that the induced function *: E(G)—N given by f*(uv)=| [f(u)]*-
[f(v)]?| for every uv € E(G) are all distinct. A graph which admits
square difference labeling is called square difference graph.

In this paper we prove that some classes of graph like Alternative
Double Triangular Snake, Alternative Triangular Snake, Banana Tree,
Umbrella Graph, Pn(Qsn) graph, C,(Qsn) graphs are square difference
graphs.
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1. Introduction

All graphs in this paper are simple finite undirected and nontrivial graph G=(V, E)
with vertex set V and the edge set E. For graph theoretic terminology, we refer to
Harary [2]. A dynamic survey on graph labeling is regularly updated by Gallian [3]
and it is published by Electronic Journal of Combinatorics. VVast amount of literature is
available on different types of graph labeling and more than 1000 research papers have
been published so far in past three decades. The square sum labeling is previously
defined by V. Ajitha, S. Arumugam and K. A. Germina [1]. The concept of square
difference labeling was first introduced by J. Shiama proved in [6] many standard
graphs like Pn, Cn, complete graphs, cycle cactus, ladder, lattice grids, quadrilateral
snakes, Wheels, Ko+ m K;, comb, star graphs, m K3, m Cs,duplication of vertices by an
edge to some star graphs and crown graphs are square difference graphs. Also proved
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that the path is an odd square difference graphs and star graphs are perfect square
graphs. Some graphs like shadow and split graphs [4] and [5] can also be investigated
for the square difference.

Definition: 1.1: Let G=(V (G), E (G)) be a graph. G is said to be square difference
labeling if there exist a bijection f. V(G)—{0,1,2,....p-1} such that the induced
function f*; E(G)—N given by  *(u v)=[f(u)]*-[f(v)]? is injective.

Definition: 1.2: Let G1,G,,...,G, be a family of disjoint stars. The tree obtained by
joining a new vertex a to one pendant vertex of each star Gi is called a banana tree. Let
Ki ng, Ky ng, ... King be a family of disjoint stars with the vertex-sets V (Ka;n;i )=fc;, ai1,
ainig and deg(ci)=n;; . 1<i<k. A banana tree BT(ny, Ny, ...Nk)is a tree obtained by adding
a new vertex a and joining it to a;;, as1,...a1k.

Definition: 1.3: Let G=Pn (Qs,) is a graph let V(G)={usuy,
LUN,V,Va,...,vmn,wy, Wy, ...,wmn}be the vertices of the graph and E(G)={u;ui+1/1<i<n-
1}U{Uini-l,WiVQi-:L/lSiSn}U{uiVQi,WiVQi/:LSiSn}. Let G1,Gy,...G, be m copies of C4
and Py, : ug,Uy,...un be a path. The P, (Qsy) is 4mn + (n-1) copies of Py,

Definition: 1.4: Let G=Cn (Qs,) is a graph let V(G)={uy,us,
LUN,V,Va,...,vmn,wy, Wy, ...,wmn}be the vertices of the graph and E(G)={u;ui+1/1<i<n-
1IULuiv2i-1,Wivi-1/1<i<n} U {ujV2i,WiVoi/ 1<i<n}. Let G1,Gy,...G, be m copies of C4 and
Let C : Ug,Up,...un be a cycle.

2. Main Result

Theorem: 1 The Double Triangular Snake G, is a square difference graph.

Proof

Let G be the Double Triangular Snake and Let V(G)={ujuz . . .Un,vy,Va,...,vN-

1,W1,Wo,...,wn-1} be the vertices of the graph and
E(G):{uiui+1/1§i§n}U{viui,wiui/1§i§n-1} U{viui+1,wiui+1/1§i§n-1} be the edges of
the graph.

Let. Let | V(G) |=2n+2 and | E(G) | =4n-1
Define the vertex labeling f:V(G)— {0,1,2,...p-1}
f(u)=i-1, 1<i<n

f(vj)=i+n-1, 1<i<n-3

f(wi)=2(n-1)+i, 1<i<n-1

and the induced edge labeling function

f: E(G)—N defined by

f(uv)= | [f(w)]*-[f(v)]? | for every uv € E(G)

is injective such that f(e;)#f(e;) for every e; #e;
The edge sets are

ElZ{UiUi+1/ 1I<i< n—l}

EZZ{ViUi/ 1I<i< n—l}

E3:{viui+1/ 1I<i< n—l}

E4:{Wiui/1§ 1< n—l}

E5:{Wiui+1/ 1I<i< n—l}

and the edge labels are
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In E1
*Uitiv)=U%y | fu)? = f(uig)? |
=UR, 1 =12 = (n—1+10)?|
=Ur, 11— 2i]
={1,3,5,...1-2n}

In E,
Pviu)=U 1 F(v)? — f(u)? |
=UE 1k2+2i(k+1)— 1]
={16,24,32,...,3n°-4n}

In E3
f(vitis)=UET | f(0)? — f(ui1)? |
=U! 1 k2 + 2ki |
={15,21,27,...,3n*6n+3}

In E4
PEwiu)=Ur | f(w)? — f(w)? |
=U 14k2+2i(2k+1) — 11
={49,63,77,...,8n°-14n+5}

In Es

f’"(WiUi+1):U?=_11 | fW)? — f(uig)?

=Ur 1 dk(k +0) |
={48,60,72,...,8n°-16n+8}
Here all the edge labels are distinct.

Hence the Double triangular snake graph admits a square difference labeling.

Theorem:2

The Alternative triangular snake G is a square difference graph.

Proof

Let G=A(T,) be the graph and Let V(G)={uj,uy, .
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. -unavlaVZa e 1Vn-1,W1,W2, e 1W n -1}be

the vertices of the graph and E(G)={uiui+1/1<i<n-1}U{Viuy;,ViUzi-1/1<i<n/2} U {viUa;.

1/1<i<n/2} be the edges of the graph. Let | V(G)|=2n-3 and |E(G) | =2n-1.
Define the vertex labeling f:V(G)- {0,1,2,...p-1}

flu)=i-1 ,1<i<n
f(vi)=i+n-1, 1<i<n-3

and the induced edge labeling function

F:E(G)—N defined by

f(uv)= | [fw)]*-[f(V)]*| for every uv € E(G)
is injective such that f(e;)#f(e;) for every e; #e;

The edge sets are
Ei-{uituix1/ 1< i< n}
Ex={viua/ 1< i < n/2}
E3:{ViU2i.1/ 1I<i< n/2}
and the edge labels are
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In E;
PEUili)=UR | f(u)? = f(uigq)? |
U1 —1)2 - (n—1+i0)?|
=UEE 11— 2i]
={1,3,5,...2n-3}

In E,
(i U2i-1):U?=/i | f(v)? = f(uzi—1)* |
=UM? In? +2n(i — 1) + 3i(2 — i) — 3|
={36,45,48,..., 5n*/4+n-3}

In E3
(Vi) =U2e | F(0)? — f(uz)? |
=UM2 In?+2n(i— 1) +i(2 - 3i) |
={35,40,39,...,5n%/4-n}
Here all the edge labels are distinct.
Hence the Alternative triangular snake graph admits a square difference labeling.

Example:
The alternative triangular snake graph A(Ts) is a square difference labeling.

Theorem: 3
The alternative double triangular snake G, is a square difference graph.

Proof:
Let P: ug, Uz ,..., Uy be the path of the graph G. Let V(G)={uy,Uz, . . .Un,V1,V2,...,Vn1,
wiw,...wn-13be the vertices of the graph and E(G)={ujui+1/1<i<n-1}U{Viuzi .1,Wili.
1/1<i<n/2} U {viuai,Wili/1<i<n/2} be the edges of the graph.

Let | V(G)|=2nand | E(G)|=3n-1

Define the vertex labeling f : VA(T,)—A{0,...,p-1}

f(u)=i-1,1<i<n

f(vi)=n-1+i, 1< i< n/2

f(Wi):37n+i-1, 1<i<n/2

and the induced edge labeling function

f: EA(T,)—N defined by

f(uv)= | [fw)]*-[f(V)]? | for every uv € E(G)

iIs injective .such that f(e;)=f(e;) for every e; #e;
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The edge sets are
Ei-{uiuix1/ 1< i< n-1}
Ez:{ViUQi-ll 1I<i< n/2}
Es={viua/ 1< i < n/2}
Es={wiuzi.1/ 1< 1< n/2}
Es={wiuy/ 1< 1< n/2}
and the edge labels are
In E;
Puitis)=UT 1 f(u)? = f(uin)? |
*(Uilis)=UT 11— 20 |

={1,35,...,1-2n}
In E,
(Vi U2i-1):UiE=1 | f(v)? — fugi—1)?|
n/2

=U; ] In*+2n(i—1)+3i(2—i) — 3|

={16,21,...,5n’/4+n-3}
In E3

Pviua)=URT 1 f(0)? = fuz)? |

=UYZ In2+2n(i— 1) +i(2 - 3i) |

={15,16,.., 5n%/4-n}
In E4

f*(WiUZi-l):U:lzli | f(Wi)? — f(uzi—1)? |

=UM2 1 2=+ n(n +3i - 3) - 3i(i — 2) — 3|

={36,45,..,.3(n*1)}
In Es

Pe(witz)=U7Ly | fwi)? = f (uz)? |

U2 13n & +i-1)+i2-30) |

={35,40,...,3n°-2n}

Here all the edges labels are distinct.

Hence the alternative double triangular snake admits a square difference labeling.
Example:
The alternative double triangular snake A(T,) is a square difference graph.
Solution :
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Theorem: 4
The Banana tree G is a square difference labeling G=BT(ny,ny,...Ny)

Proof:
Let P : uj, Uz ,..., Uy be the path of the graph G and Let V(G)={uiuz . .
Un,V1,V2,...,Vn,W1,W2,...,Wns+1 }0e the vertices of the graph and E(G)={ujui+1/1<i<n-
LFULuivil1<i<n} U {vi,WaisWaioWai1W4i/1<i<n} be the edges of the graph. Let
| V(G) | =6nand | E(G)|=6n -1.

Define the vertex labeling f : E—{0,...,p-1}

f(u)=i-1,1<i<n

f(vi)=n-1+i, 1<i<n

f(wi)=2n+i-1, 1< i< n+l

and the induced edge labeling function

f: E(BT(ny,ny,...nk))—N defined by

f(uv)= | [fw)]*-[f(V)]* | for every uv € E(G)

iIs injective .such that f(e;)=f(e;) for every e; #eg;

The edge sets are

Ei-{uiuis1/ 1< i < n-1}

EQZ{UiVi/ 1I<i< n}

E3:{W4i.3Vi/ 1<i< n}

E4:{W4i-2 Vi/ 1I<i< n}

E5:{W4i.1 Vi/ 1I<i< n}

E@Z{W4i Vi/ 1I<i< n}

and the edge labels are

In E;
P(E)=URE 1 F(u)? — f(uier)? |
=yt 11— 2il
={1,3,....3-2n}

(E2)=Uly | f(u)? — f(v:)?

=Ur, 1(—1)2—(n+i—1)?%|

=UL, | —n?—2ni+2n|
={9,15,21,...,-3n’+2n}

*(Es)=UlL, | f(W4i_3)* — f(v;)? |

=Ur, 1@Cn+4i—-4)2 —(m+i—1)?%|

=U%, 13n2 + 15i2 + 14ni — 14n — 30i + 15|
={27,84,171,...,32n%*44n+15}

*(Ea)=UL, | f(Wdi_5)* — f(v)? |

=UL, 1(2n+4i-3)2—(n+i—1)?]
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=U, I3n? + 15i2 + 14ni — 10n — 22i + 8|
={40,105,200,...,8(4n*-4n+1)}

*(Es)=Ul, | f(Wdi_1)? — f(v)? |

=Ur, 1@2n+4i—-2)2—(m+i—1)*%|
=UL, 13n? + 15i2 + 14ni — 6n — 14i + 3|
={55,128,231,...,32n?-20n+3 }

P (Es)=Uly | f(Wd)? — f(v)? |

=UL, 1@Cn+4i—1)2—(n+i—-1)2%|
l

=U™, | 3n2 + 15i2 + 14ni — 2n — 6i={72,153,264,...,32n°-8n
=1

Here all the edge labels are distinct.
Hence the Banana tree admits a square difference labeling .

Theorem:5
The Umbrella graph is a square difference labeling.

Proof:
Let U(G) be the umbrella graph. Let V(G)={us,Uy, . . .Un,V1,V2,...,Vn +1}0e€ the vertices
of the graph and E(G)={uiui+1/1<i<n-1}U{ViVi+1,viun/1<i<n+1} be the edges of the
graph.

Let | V(G)|=nand | E(G)|=3n.

Define the vertex labeling f:E— {0,1,2,...p-1}

f(u)=i-1 ,1<i<n

f(vi)=i+2, 1< i< n+l

and the induced edge labeling function f.E—N defined by

f(uv)= | [fw)]*-[f(v)]? | for every uv € E(G) are all distinct .Such that ~f(e;)=f(e;))
for every e; #g;

The edge sets are

E;={uiuix1/ 1< i < n-1}

Ex={vivi:i/ 1< i< n}
E3:{ViUn/ 1I<i< n+1}

and the edge labels are

P(E)=UT | F(w)? — f(uipq)? |
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=Urt 11— 2il

={1,3,...,3-2n}

(E)=ULy 1 f(0)? — f(vig1)? |
=Ur, | —2i—5]

={7,9,11,...-(2n+5)}
f*(E3)=U?;11 |f(17i)2 - f(un)z |
=Urr 1i2+4i—n(n—2) + 3|
={5,12,21,... 8(n+1)}

Here all the edge labels are distinct.
Hence the umbrella graph admits a square difference labeling.

For example;

Theorem:6
The graph G=P, (QS,) is a square difference labeling (n>1, m>1).

Proof:
Let G=P, (QSy) isagraph. let V(G)={us,uy, .. .,Un,V1,V2,...,Vimn,W1,W2,...,Wmnn}be the
vertices of the graph and E(G)={uiUi+1/1<i<n-1}U{uiV2i.1, WiVai.

1/1<i<n} U {uivai,Wivail 1<i<n}.Let G1,Gy,...G, be m copies of C4 and Py, : ug,Up,...Unbe a
path . The P, (QS,) is 4mn + (n-1) copies of P,.

Let | V(G)|=3mn+nand | E(G)|=4mn + (n-1)

Define the vertex labeling .E—{0,1,...p-1}

f(u)=i-1,1<i<n
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f(Vanksi)=(3k+1)n+(i-1), 1<i<n-1, k=0,1,2,3,...,n
f(Wnk+1)=3n(k+1)+(i-1), 1<i<n-1, k=0,1,2,3,...,n
f(vi)=n+i-1 for k=0
f(wi)=3n+i-1 for k=0
and the induced edge labeling function
f:E—N defined by
f(uv)= | [fw)]*-[f(V)]? | for every uv € E(G)
iIs injective .such that f(e;)=f(e;) for every e; #e;
The edge sets are
E;={uiuix1/ 1< i < n-1}
Ex={uivia/ 1< i< n}
Es={uiv.i/ 1<i<n}
Es={wivzi.i/ 1< i< n}
Es={wivsi/ 1<i<n}
and the edge labels are
InE;
P (uitli+)=UT 1 (1 —0)% —i?|
:U?;fl (1-2i)1
={1,3,5,...,3-2n}
In E;
P (UVa)=URS | f @)? = f(v2i1)? |
=UL, 1(—-1)? —(n+2i—2)21 |
=UL, 13i2—-i)—n(n+4i—4) -3
={4,15,...-(8n*10n+3)}
In B3
P(uiva)=Uy | f(u)? — f(v2:)* |
=UL, 1(i—1)% — (n+2i —1)?|
=Ur, | =3i?+2i—-n?-2n(2i—1) |
={9,24,....-(8n*-8)}
InE4

199
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Pe(Wivai)=UTLy | f(W)? — f(v2:)? |

=UL, IBn+i—1)2—(n+2i—2)?
=UL, 18n2 —3(i2+ 1) +2n(i — 1) + 6i) |
={32,33,...,7n°+4n-3}

In Es

fewiva)=Ur, | f(w)? = f(v3:)? |

=UL, IBn+i—1)2-(n+2i—1)2|
=UlL, 18n2 —3i2 + 2ni —4n + 2i|

=UL, 18n2—-i(Bi—2)+2n(i—2)I
={27,24,...,7n*-2n}

Here all the edge labels are distinct.

Hence the P,(QS,) graph admits a square difference labeling.
For example;

The graph P, (QS3) is a square difference labeling.

Solution:
Ifn>landm>1
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Theorem: 10
The graph G=C, (QSy) is a square difference labeling for all m>1 and for all n>3.

Proof:

Let G=C, (QSy) is a graph . let V(G)={uy,Uz, . . .,Un,V1,V2,...,Vinn,W1,W2,...,Wmn }be the
vertices of the graph and E(G)={uiUi+1/1<i<n-1}U{uiV2i.1, WiVai.
1/1<i<n} U {uivai,Wivoi/1<i<n}. Let G denote m copies of C, and Let C, : ug,Up,...Un Up
be a cycle . Let | V(G) [=3mn +nand | E(G)|=4mn +n.

Define the vertex labeling f: E={0,1,...p-1}.

f(u)=i-1,1<i<n

f(Varksi)=(Bk+1)n+(i-1), 1<i<n-1, k=0,1,2,3,...,n
f(Wnk+1)=3n(k+1)+(i-1), 1<i<n-1, k=0,1,2,3,...,n
f(vi)=n+i-1 for k=0

f(wi)=3n+i-1 for k=0

and the induced edge labeling function

f:E—N defined by

f(uv)= | [fw)]*-[f(V)]? | for every uv € E(G)

iIs injective .such that f(e;)=f(e;) for every e; #e;
The edge sets are

Ei-{uiuis1/ 1< i < n-1}

Ex={uivia/ 1< i< n}

Es={uivai/ 1<i < n}

Es={wivzi.i/ 1< i< n}

E5:{WiV2i/ 1<i< n}
and the edge labels are

In E;
P(uiiz)=U 1 (1 — )% — i |
=Ur( - 20) |
={1,3,5,...,3-2n}

In E,
P(uivai)=Uiy | f(u)? = f(v2i-1)? |
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=UL, 1(i—1)% —(n+2i—2)?
=UL, 13i(2—i)—n?+4n(1 —i) — 3|
={9,24,45,...,-8n2+10n-3}

In E3
Pe(uiva)=UL, | F(u)? — f(v)?]
=UL, | (i —1)? — (n+2i — 1)?|
=UL, | —3i2+2i —n?—2n(2i — 1)|
={16,35,60,...,-8n2+4n}

In E4
Pewivai)=UL, | Fw)? — f(v)? |
=UL, |@Bn+i—1)2 - (n+2i - 2)?|
=U%, | 8n2 — 3(i2 + 1) + 2n(i — 1) + 6i) |
={72,75,72,...,7n*+4n-3}

In Es
Pe(wiva)=Uiy | fFW)? — f(v20)?]
=UL, | @r+i-1)2-(n+2i-1)2]
=U%, | 8n2 — 3i2 + 2ni — 4n + 2i
=U%L, |8n2 —i(3i — 2) + 2n(i — 2)|
={65,64,57,...,7n*-2n}

Here all the edge labels are distinct.

G. Amuda & S. Meena

Hence the C,(QSn) graph admits a square difference labeling.

Example;

The graph C,(QS,) is a square difference labeling. (n>3, m>1).

Solution:
Ifn>3andm>1
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