On Partial Quasi-bilateral Generating Functions Involving Gegenbauer Polynomials

K.P. Samanta and B. Samanta

1Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah–711103, W.B., India.
2Department of Mathematics, Shibpur D.B. Institution(College), 412/1, G.T. Road, Howrah–711102, W.B., India
E-mail: 1kalipadasamanta2010@gmail.com, 2bijoybasamanta@yahoo.com

Abstract

In this paper, we have obtained a generalization of a known result on quasi-bilateral generating relation involving Gegenbauer polynomials from the existence of partial quasi-bilateral generating relation of the polynomial under consideration. Some particular cases of interest are also pointed out.

AMS-2010 Subject Classification Code: 33C45, 33C47, 33C65

Keywords: Gegenbauer polynomials, partial quasi-bilateral generating functions.

1. Introduction

In [1], Mondal defined partial quasi-bilateral generating for two special functions by means of the relation:

\[G(x, u, w) = \sum_{n=0}^{\infty} a_n P_{m+n}^{(\alpha)}(x) Q_r^{(m+n)}(u)w^n, \]

where \(a_n \), the coefficients are quite arbitrary and \(P_{m+n}^{(\alpha)}(x), Q_r^{(m+n)}(u) \) are two particular special functions of orders \(m+n, r \) and of parameters \(\alpha \) and \(m+n \) respectively. If \(Q_r^{(m+n)}(u) \equiv P_r^{(m+n)}(u) \), the generating relation is known as partial quasi-bilinear.
In this note, we would like to show that the existence of a partial quasi-bilinear generating function implies the existence of a more general generating function from the group theoretic view-point.

In [2], Samanta, Chandra and Bera have proved the following theorem on bilateral generating functions involving modified Gegenbauer polynomials, $C_{n+1}^\lambda (x)$ by group-theoretic method.

Theorem 1 If there exists a unilateral generating relation of the form

$$ G(x, w) = \sum_{n=0}^{\infty} a_n C_{n+1}^\lambda (x) w^n $$ \hspace{1cm} (1.1)

then

$$ \frac{(1-w)^{\lambda-\frac{1}{2}}}{\{1-w+w^2 x^2\}^{\lambda/2}} G \left(\frac{x}{\{1-w+w^2 x^2\}^{\lambda/2}}, \frac{w(1-w)}{\{1-w+w^2 x^2\}^{\lambda/2}} \right) = \sum_{n=0}^{\infty} w^n \sigma_n (x, v), \hspace{1cm} (1.2) $$

where

$$ \sigma_n (x, v) = \sum_{p=0}^{n} a_p \left(\frac{p+1}{2} \right)_{n-p} \left(\frac{p+2}{2} \right)_{n-p} C_{n+1}^\lambda (x) v^p. $$

The importance of the above theorem lies in the fact that whenever one knows a unilateral generating relation of the form (1.1) then the corresponding bilateral generating relation can at once be written down from (1.2). So one can get a large number of bilateral generating relations by attributing different suitable values to a_n in (1.1).

Subsequently, In [3], Samanta and Chongdar obtained an extension of the above theorem in the following form:

Theorem 2 If there exists a unilateral generating relation of the form

$$ G(x, w) = \sum_{n=0}^{\infty} a_n C_{n+r}^\lambda (x) w^n $$ \hspace{1cm} (1.3)

then

$$ \frac{(1-w)^{\lambda-\frac{1}{2}}}{\{1-w+w^2 x^2\}^{\lambda/2}} G \left(\frac{x}{\{1-w+w^2 x^2\}^{\lambda/2}}, \frac{w(1-w)}{\{1-w+w^2 x^2\}^{\lambda/2}} \right) = \sum_{n=0}^{\infty} w^n \sigma_n (x, v), \hspace{1cm} (1.4) $$

Where

$$ \sigma_n (x, v) = \sum_{p=0}^{n} a_p \left(\frac{p+r+1}{2} \right)_{n-p} \left(\frac{p+r+2}{2} \right)_{n-p} C_{n+r}^\lambda (x) v^p. $$
In [4], authors have obtained a nice extension of the Theorem 1 from the existence of quasi-bilinear generating relation.

Theorem 3 If there exists a quasi-bilinear generating relation of the following form

\[G(x, u, w) = \sum_{n=0}^{\infty} a_n c_{n+1}(x) c_m(u) w^n \]

then

\[(1 - 2w)^{\lambda - \frac{m}{2}} \left(1 - 2w(1 - x^2) \right)^{-\lambda} \times G \left(\frac{x}{\left(1 - 2w(1 - x^2) \right)^{\frac{1}{2}}}, \frac{u}{(1 - 2w)^{\frac{1}{2}}}, \frac{wt}{\left(1 - 2w(1 - x^2) \right)^{\frac{3}{2}}} \right) \]

\[= \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_n \frac{w^{n+p+q}}{p!q!} 2^{p+q} \frac{(n+1)}{p} \frac{(n+p+q)}{p} \frac{(n+q)}{p} c_{n+2p}^{\lambda + n - p}(x) c_{m+q}^{n+r+q}(u) t^n. \]

The object of the present paper is to further generalize the above theorem from the concept of partial quasi-bilateral (or partial quasi-bilinear) generating functions. In fact, we have obtained the following theorem as the main result of our investigation.

Theorem 4 If there exists a partial quasi-bilinear generating relation of the following form

\[G(x, u, w) = \sum_{n=0}^{\infty} a_n c_{n+r}(x) c_m(u) w^n \]

Then

\[(1 - 2w)^{\lambda - \frac{m}{2} - \frac{1}{2}} \left(1 - 2w(1 - x^2) \right)^{-\lambda} \times G \left(\frac{x}{\left(1 - 2w(1 - x^2) \right)^{\frac{1}{2}}}, \frac{u}{(1 - 2w)^{\frac{1}{2}}}, \frac{wt}{\left(1 - 2w(1 - x^2) \right)^{\frac{3}{2}}} \right) \]

\[= \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_n \frac{w^{n+p+q}}{p!q!} 2^{p+q} \frac{(n+r+1)}{p} \frac{(n+r+q)}{q} \frac{(n+r+p)}{p} c_{n+r+2p}^{\lambda + n - p}(x) c_{m+q}^{n+r+q}(u) t^n. \]

2. Proof of the theorem

At first we consider the generating relation of the form:

\[G(x, u, w) = \sum_{n=0}^{\infty} a_n c_{n+r}(x) c_m(u) w^n. \quad (2.1) \]

For the Gegenbauer polynomials, we consider the following operators[3,5]:
Now, replacing λ with (2.7), with the help of (2.4) and (2.5), becomes

\begin{align*}
R_1 &= x(1 - x^2) \frac{y^2}{z^3} \frac{\partial}{\partial x} + (1 - 3x^2) \frac{y^3}{z^3} \frac{\partial}{\partial y} - \frac{2x^2y^2}{z^2} \frac{\partial}{\partial z} + (1 + r - r x^2) \frac{y^2}{z^3}, \\
R_2 &= uv \frac{\partial}{\partial u} + 2v^2 \frac{\partial}{\partial v} + (m + 2r) v
\end{align*}

such that

\begin{align*}
R_1\left(C_n^{\lambda+n}(x)y^n z^\lambda\right) &= \frac{(n + r + 1)(n + r + 2)}{2(1 - \lambda - n)} C_n^{\lambda+n+1}(x)y^{n+2} z^{\lambda-3}, \quad (2.2) \\
R_2\left(C_m^n(u)v^n\right) &= 2(n + r) C_m^{n+r+1}(u)v^{n+1} \quad (2.3)
\end{align*}

And

\begin{align*}
e^{wR_1} f(x, y, z) &= \left(1 - 2w \frac{y^2}{z^3}\right)^{-\frac{1}{2}} \left(1 - 2w(1 - x^2) \frac{y^2}{z^3}\right)^{-r} \\
&\times \left(\frac{x}{1 - 2w(1 - x^2) \frac{y^2}{z^3}}\right)^{\frac{1}{2}} \left(\frac{y}{1 - 2w(1 - x^2) \frac{y^2}{z^3}}\right)^{\frac{1}{2}} \left(\frac{z}{1 - 2w(1 - x^2) \frac{y^2}{z^3}}\right)^{\frac{1}{2}}, \quad (2.4)
\end{align*}

\begin{align*}
e^{wR_2} f(u, v) &= (1 - 2wv)^{-\frac{m}{2} - r} f\left(\frac{u}{1 - 2wv}, \frac{v}{1 - 2wv}\right) \quad (2.5)
\end{align*}

Replacing w by $wvyt$ and multiplying both sides of (2.1) by z^λ, we get

\begin{align*}
z^\lambda G(x, u, wvyt) &= \sum_{n=0}^{\infty} a_n \left(C_n^{\lambda+n}(x)y^n z^\lambda\right)(C_m^{n+r}(u)v^n) (wt)^n. \quad (2.6)
\end{align*}

Now operating e^{wR_1} e^{wR_2} on both sides of (2.6), we get

\begin{align*}
e^{wR_1} e^{wR_2} [z^\lambda G(x, u, wvyt)] = \\
e^{wR_1} e^{wR_2} \left\{\sum_{n=0}^{\infty} a_n \left(C_n^{\lambda+n}(x)y^n z^\lambda\right)(C_m^{n+r}(u)v^n) (wt)^n\right\} \quad (2.7)
\end{align*}

The left member of (2.7), with the help of (2.4) and (2.5), becomes

\begin{align*}
&\left(1 - 2w \frac{y^2}{z^3}\right)^{-\frac{1}{2}} \left(1 - 2w(1 - x^2) \frac{y^2}{z^3}\right)^{-r} \left(1 - 2wv\right)^{-\frac{m}{2} - r} z^\lambda \\
&\times G\left(\frac{x}{1 - 2w(1 - x^2) \frac{y^2}{z^3}}, \frac{u}{1 - 2w(1 - x^2) \frac{y^2}{z^3}}, \frac{wvyt(1 - 2w \frac{y^2}{z^3})}{1 - 2w(1 - x^2) \frac{y^2}{z^3}}\right) \quad (2.8)
\end{align*}
On Partial Quasi-bilateral Generating Functions Involving Gegenbauer

The right member of (2.7), with the help of (2.2) and (2.3), becomes

\[
\sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_n w^{p+q} \frac{n+r+1}{2^p} \frac{n+r+2}{2^p} \frac{n+r}{q} \frac{n+r+q}{(1-\lambda-n)_p} \times C_{n+r+2p}(x) C_m^{n+r+q}(u) y^{n+2p} z^{3p} v^{n+q} (wt)^n. \tag{2.9}
\]

Now equating both members, and then substituting \(y = z = v = 1 \), we get

\[
(1 - 2w)^{\lambda - \frac{m}{2} - \frac{1}{2} - r}\{1 - 2w(1 - x^2)\}^{-\frac{r}{2} - \lambda} \times G \left(\frac{x}{1 - 2w(1 - x^2)}, \frac{u}{1 - 2w}, \frac{wt}{1 - 2w(1 - x^2)} \right) = \\
\sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_n w^{n+p+q} \frac{n+r+1}{2^p} \frac{n+r+2}{2^p} \frac{n+r}{q} \frac{n+r+q}{(1-\lambda-n)_p} C_{n+r+2p}(x) C_m^{n+r+q}(u) t^n. \tag{2.10}
\]

This completes the proof of Theorem 4.

Corollary 1: Putting \(r = 0 \) in (10), we get

\[
(1 - 2w)^{\lambda - \frac{m}{2} - \frac{1}{2}}\{1 - 2w(1 - x^2)\}^{-\lambda} \times G \left(\frac{x}{1 - 2w(1 - x^2)}, \frac{u}{1 - 2w}, \frac{wt}{1 - 2w(1 - x^2)} \right) = \\
\sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} a_n w^{n+p+q} \frac{n+1}{2^p} \frac{n+2}{2^p} \frac{n}{q} \frac{n}{(1-\lambda-n)_p} C_{n+2p}(x) C_m^{n+q}(u) t^n,
\]

which is Theorem 3. Thus Theorem 4 is an extension of Theorem 3.

Corollary 2: If we put \(m = 0 \), we notice that \(G(x, u, w) \) becomes \(G(x, w) \) since \(C_0^{n+r+q}(u) = 1 \). Hence from (2.10), we get

\[
(1 - 2w)^{\lambda - \frac{1}{2} - r}\{1 - 2w(1 - x^2)\}^{-\frac{r}{2} - \lambda} \times G \left(\frac{x}{1 - 2w(1 - x^2)}, \frac{wt}{1 - 2w(1 - x^2)} \right)
\]
\[\sum_{n=0}^{\infty} \sum_{p=0}^{\infty} a_n \frac{w^{n+p}}{p!} 2p \frac{(n+r+1)}{2} p \frac{(n+r+2)}{2} p C_{n+r+2p}(x) t^n \left(\sum_{q=0}^{\infty} \frac{(2w)^q (n+r)_q}{q!} q \right) \]

\[= \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} a_n \frac{(2w)^{n+p}}{p!} p \frac{(n+r+1)}{2} p \frac{(n+r+2)}{2} p C_{n+r+2p}(x) \left(\frac{t}{2(1-2w)} \right)^n (1 - 2w)^{-r} \]

Replacing \(\frac{t}{2(1-2w)} \) by \(v \) and then \(2w \) by \(w \) on both sides, we get

\[(1-w)^{\lambda - \frac{1}{2}} \{ 1 - w(1-x^2) \}^{r-1} (1-w)^{-\lambda} G \left(\frac{x}{1-w(1-x^2)} \right), \frac{wv(1-w)}{1-w(1-x^2)} \]

\[= \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} a_n \frac{(w)^{n+p}}{p!} p \frac{(n+r+1)}{2} p \frac{(n+r+2)}{2} p C_{n+r+2p}(x) v^n \]

\[= \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} a_n \frac{w^n}{p!} p \frac{(n-p+r+1)}{2} p \frac{(n-p+r+2)}{2} p C_{n+r+p}(x) v^n. \]

Therefore we have

\[(1-w)^{\lambda - \frac{1}{2}} \{ 1 - w(1-x^2) \}^{r-1} (1-w)^{-\lambda} G \left(\frac{x}{1-w(1-x^2)} \right), wv(1-w) \]

\[= \sum_{n=0}^{\infty} w^n \sigma_n(x,v) \]

Where

\[\sigma_n(x,v) = \sum_{p=0}^{n} a_p \frac{(p+r+1)}{n-p} \frac{(p+r+2)}{2} p C_{n+r+p}(x) v^n. \]

Corollary 3: If we put \(r = 0 \) in the above result, we get the Theorem 1.

3. Acknowledgment
The authors are greatly indebted to Dr. A.K. Chongdar of IIEST, Shibpur for his constant encouragement and guidance.
On Partial Quasi-bilateral Generating Functions Involving Gegenbauer

References

