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Abstract 
 
In this paper, we have obtained a generalization of a known result on 
quasi-bilateral generating relation involving Gegenbauer polynomials 
from the existence of partial quasi-bilateral generating relation of the 
polynomial under consideration. Some particular cases of interest are 
also pointed out. 
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1. Introduction 
In [1],Mondal defined partial quasi-bilateral generating for two special functions by 
means of the relation: 

,ݔ)ܩ (ݓ,ݑ =  ∑ ܽ ܲା
(ఈ) ஶ(ݔ)

ୀ ܳ
(ା)(ݑ)ݓ,  

 
whereܽ , the coefficients are quite arbitrary and   ܲା

(ఈ) ,(ݔ)  ܳ
(ା)(ݑ) are two 

particular special functions of orders ݉ + ݊ , ݉ and ߙ  and of parameters ݎ + ݊ 
respectively. If ܳ

(ା)(ݑ) ≡ ܲ
(ା)(ݑ) , the generating relation is known as partial 

quasi-bilinear. 
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In this note, we would like to show that the existence of a partial quasi-bilinear 
generating function implies the existence of a more general generating function from 
the group theoretic view-point. 

 In [2], Samanta, Chandra and Bera have proved the following theorem on bilateral 
generating functions involving modified Gegenbauer poynomials, ܥఒା(ݔ) by group-
theoretic method. 

Theorem 1 If there exists a unilateral generating relation of the form 
 

(ݓ,ݔ)ܩ = ∑ ܽܥఒା(ݔ) ݓஶ
ୀ   (1.1) 

 
then 

(ଵି௪)ഊ – భమ

൛ ଵି௪ା௪௫మ ൟ
ഊܩ ൭

௫

൛ ଵି௪ା௪௫మ ൟ
భ
మ  

, ௪௩(ଵି௪)

൛ ଵି௪ା௪௫మ ൟ
య
మ
൱  (1.1) 

 

=  ∑ ,ݔ)ߪ ݓ ஶ,(ݒ
ୀ   (1.2.) 

where  
 

,ݔ)ߪ (ݒ = ∑ ܽ
ቀశభమ ቁ

ష
ቀశమమ ቁ

ష

(ି)!(ଵିఒି)ష
ଶିܥ
ఒିାଶ(ݔ)

ୀ   .ݒ
 
The importance of the above theorem lies in the fact that whenever one knows a 

unilateral generating relation of the form (1.1) then the corresponding bilateral 
generating relation can at once be written down from ( 1.2). So one can get a large 
number of bilateral generating relations by attributing different suitable values to ܽ in 
(1.1). 

Subsequently, In [3], Samanta and Chongdar obtained an extension of the above 
theorem in the following form: 

Theorem 2 If there exists a unilateral generating relation of the form 
 

(ݓ,ݔ)ܩ = ∑ ܽܥାఒା(ݔ) ݓ∞
ୀ    (1.3) 

Then 
 

(ଵି௪)ഊష
భ
మ

൛ ଵି௪ା௪௫మ ൟ
ഊశೝమ

ܩ ൭ ௫

൛ ଵି௪ା௪௫మ ൟ
భ
మ  

, ௪௩(ଵି௪)

൛ ଵି௪ା௪௫మ ൟ
య
మ
൱ = ∑ ,ݔ)ߪ ݓ ∞,(ݒ

ୀ   (1.4) 

 
Where 

,ݔ)ߪ (ݒ = ܽ
ቀ + ݎ + 1

2 ቁ
ି

ቀ + ݎ + 2
2 ቁ

ି

(݊ − !( (1− ߣ − ି(
ଶାିܥ
ఒିାଶ(ݔ)



ୀ

ݒ . 
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In [4], authors have obtained a nice extension of the Theorem 1 from the existence 
of quasi-bilinear generating relation. 

 
Theorem 3 If there exists a quasi-bilinear generating relation of the following form 
 

,ݔ)ܩ (ݓ,ݑ = ∑ ܽܥఒା(ݔ)ܥ ஶݓ(ݑ)
ୀ   

then 

(1 − ఒ ି ଶ(ݓ2  ି ଵଶ{ 1 − 1)ݓ2 −  ଶ) }ି ఒݔ
 

× ܩ ൭ ௫

൛  ଵିଶ௪(ଵି௫మ) ൟ
భ
మ  

, ௨

(ଵିଶ௪)
భ
మ

௪௧

൛  ଵିଶ௪(ଵି௫మ) ൟ
య
మ
൱  

 

= ∑ ∑ ∑ ܽ
௪శశ

!!
2ା

ቀశభమ ቁ

ቀశమమ ቁ


()

(ଵିఒି)
ାଶܥ
ఒାି(ݔ)ܥ

ା(ݑ)ݐ .ஶ
ୀ

ஶ
ୀ

ஶ
ୀ   

 
The object of the present paper is to further generalize the above theorem from the 

concept of partial quasi-bilateral(or partial quasi-bilinear) generating functions. In fact, 
we have obtained the following theorem as the main result of our investigation. 

Theorem 4 If there exists a partial quasi-bilinear generating relation of the 
following form 

 
(ݓ,ݑ,ݔ)ܩ = ∑ ܽܥା ఒା(ݔ)ܥ ା(ݑ)ݓஶ

ୀ   
Then 

 

(1 − ఒି మ(ݓ2  ି భమ ି ൛ 1− 1)ݓ2 − ଶ) ൟݔ
ି ೝమ ି ఒ

  

× ܩ ൭ ௫

൛  ଵିଶ௪(ଵି௫మ) ൟ
భ
మ  

, ௨

(ଵିଶ௪)
భ
మ

௪௧

൛  ଵିଶ௪(ଵି௫మ) ൟ
య
మ
൱  

=

∑ ∑ ∑ ܽ
௪శశ

!!
2ା

ቀశೝశభమ ቁ

ቀశೝశమమ ቁ


(ା)

(ଵିఒି)
ାାଶܥ
ఒାି ܥ(ݔ)

ାା(ݑ)ݐ .ஶ
ୀ

ஶ
ୀ

ஶ
ୀ   

 
2. Proof of the theorem 
At first we consider the generating relation of the form: 
 

(ݓ,ݑ,ݔ)ܩ = ܽܥା ఒା(ݔ)ܥ ା(ݑ)ݓ
ஶ

ୀ

.                                        (2.1) 

 
For the Gegenbauer polynomials, we consider the following operators[3,5]: 
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ܴଵ = 1)ݔ − (ଶݔ
ଶݕ

ଷݖ
߲
ݔ߲ + (1− (ଶݔ3

ଷݕ

ଷݖ
߲
ݕ߲ −

ଶݕଶݔ2

ଶݖ
߲
ݖ߲ + (1 + ݎ − (ଶݔݎ

ଶݕ

ଷݖ  ,   

 

                               ܴଶ = ݒݑ
߲
ݑ߲ + ଶݒ2

߲
ݒ߲ + (݉ +  ݒ(ݎ2

such that 
 

ܴଵ൫ܥାఒା(ݔ)ݕݖఒ൯ =
(݊ + ݎ + 1)(݊ + ݎ + 2)

2(1− ߣ − ݊) ,ఒିଷݖାଶݕ(ݔ)ାାଶఒାିଵܥ (2.2) 

 
ܴଶ(ܥ ା(ݑ)ݒ) = 2(݊ +  ାଵ                                           (2.3)ݒ ାାଵ(u)ܥ(ݎ

 
And 

݁௪ோభ݂(ݔ, ,ݕ  (ݖ  = ቊ1 − ݓ2
ଶݕ

ଷቋݖ
ି ଵଶ

ቊ1 − 1)ݓ2 − (ଶݔ
ଶݕ

ଷቋݖ
ି ଶ

 

× ݂൮ ௫

൜ଵିଶ௪(ଵି௫మ)
మ

య
ൠ
భ
మ

 

,   
௬൬ଵିଶ௪మ

య
൰

൜ଵିଶ௪(ଵି௫మ)
మ

య
ൠ
య
మ

,  
௭൬ଵିଶ௪మ

య
൰

൜ଵିଶ௪(ଵି௫మ)
మ

య
ൠ
൲,  (2.4) 

 

݁௪ோమ ,ݑ)݂  (ݒ = (1 − మ ି(ݒݓ2  ି ݂ ቆ ௨

(ଵିଶ௪௩)
భ
మ

, ௩
(ଵିଶ௪௩)

ቇ   (2.5) 

 
Replacing  ݓ by  ݐݕݒݓ  and multiplying both sides of (2.1) by ݖఒ, we get  

,ݔ)ܩ ఒݖ (ݐݕݒݓ,ݑ  = ܽ൫ܥାఒା(ݔ)ݕݖఒ൯(ܥା(ݑ)ݒ) (ݐݓ)
ஶ

ୀ

.        (2.6) 

Now operating  ݁௪ோభ  ݁௪ோమ  on both sides of (2.6), we get 
 

݁௪ோభ݁௪ோమൣݖఒݔ)ܩ, ൧(ݐݕݒݓ,ݑ  = 
 

݁௪ோభ݁௪ோమൣ∑ ܽ൫ܥାఒା(ݔ)ݕݖఒ൯(ܥା(ݑ)ݒ) (ݐݓ)ஶ
ୀ ൧  (2.7) 

 
The left member of (2.7), with the help of (2.4) and (2.5), becomes 

ቀ1− ݓ2 ௬మ

௭య
ቁ
ఒ ି భమ ቄ 1 − 1)ݓ2 − (ଶݔ ௬

మ

௭య
 ቅ
ି ೝమ ି ఒ

(1 − మ ି(ݒݓ2  ି ݖఒ  
 

× ܩ ቌ ௫

൜  ଵିଶ௪(ଵି௫మ)
మ

య  ൠ
భ
మ

  

, ௨

(ଵିଶ௪௩)
భ
మ

௪௩௬௧൬ଵିଶ௪మ

య
൰

൜  ଵିଶ௪(ଵି௫మ)
మ

య  ൠ
య
మ

(ଵିଶ௪௩)

ቍ  (2.8) 
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The right member of (2.7), with the help of (2.2) and (2.3), becomes 
 

ܽ
ାݓ

! !ݍ 2ା
ቀ݊ + ݎ + 1

2 ቁ

ቀ݊ + ݎ + 2

2 ቁ


(݊ + (ݎ
(1− ߣ − ݊)

ஶ

ୀ

ஶ

ୀ

ஶ

ୀ

 

 
× ାାଶ ܥ

 ఒାି  ܥ(ݔ)
ାା(ݑ)ݕାଶݖఒିଷݒା (ݐݓ).     (2.9) 

 
Now equating both members, and then substituting  ݕ = ݖ = ݒ = 1, we get 
 

(1 − ఒ ି మ(ݓ2  ି భమ ି ൛ 1 − 1)ݓ2 − ଶ) ൟݔ
ି ೝమ ି ఒ

  
 

× ܩ ൭ ௫

൛  ଵିଶ௪(ଵି௫మ)ൟ
భ
మ  

, ௨

(ଵିଶ௪)
భ
మ

, ௪௧

൛  ଵିଶ௪(ଵି௫మ) ൟ
య
మ
൱  

=

∑ ∑ ∑ ܽ
௪శశ

!!
2ା

ቀశೝశభమ ቁ

ቀశೝశమమ ቁ


(ା)

(ଵିఒି)
ାାଶܥ
ఒାି ܥ(ݔ)

ାା(ݑ)ݐ .ஶ
ୀ

ஶ
ୀ

ஶ
ୀ (2.10) 

 
This completes the proof of Theorem 4. 

Corollary 1:  Putting ݎ = 0 in (10), we get 
 

(1 − ఒ ି మ(ݓ2  ି భమ൛ 1 − 1)ݓ2 − ଶ) ൟݔ
 ି ఒ

  

× ܩ ൭ ௫

൛  ଵିଶ௪(ଵି௫మ)ൟ
భ
మ  

, ௨

(ଵିଶ௪)
భ
మ

, ௪௧

൛  ଵିଶ௪(ଵି௫మ) ൟ
య
మ
൱  

=

∑ ∑ ∑ ܽ
௪శశ

!!
2ା

ቀశభమ ቁ

ቀశమమ ቁ


()

(ଵିఒି)
ାଶܥ
ఒାି(ݔ)ܥ

ା(ݑ)ݐ ,ஶ
ୀ

ஶ
ୀ

ஶ
ୀ   
 
whichis Theorem 3. Thus Theorem 4 is an extension of Theorem 3. 

Corollary 2: If we put ݉ = 0, we notice that (ݓ,ݑ,ݔ)ܩ becomes (ݓ,ݔ)ܩ since 
ܥ
ାା(ݑ) = 1. Hence from (2.10), we get 

 

(1 − ఒ  ି భమ ି ൛ 1(ݓ2 − −1)ݓ2 ଶ) ൟݔ
ି ೝమ ି ఒ

  

× ܩ ൭ ௫

൛  ଵିଶ௪(ଵି௫మ)ൟ
భ
మ  

, ௪௧

൛  ଵିଶ௪(ଵି௫మ) ൟ
య
మ
൱  
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              = 

∑ ∑ ܽ
௪శ

!
2

ቀశೝశభమ ቁ

ቀశೝశమమ ቁ



(ଵିఒି)
ାାଶܥ
ఒାି ݐ(ݔ) ቀ∑ (ଶ௪)(ା)

!
ஶ
ୀ ቁஶ

ୀ
ஶ
ୀ   

 

  = ∑ ∑ ܽ
(ଶ௪)శ

!

ቀశೝశభమ ቁ

ቀశೝశమమ ቁ



(ଵିఒି)
ାାଶܥ
ఒାି (ݔ) ቄ ௧

ଶ(ଵିଶ௪)
ቅ


(1 −ஶ
ୀ

ஶ
ୀ

   ି (ݓ2
 
Replacing  ቀ ௧

ଶ(ଵିଶ௪)
ቁ by ݒ and then 2ݓ by ݓ on both sides, we get 

 

(1− ఒ  ି ଵଶ{ 1 (ݓ −1)ݓ− ܩଶ) }ି ଶ ି ఒݔ ቌ
ݔ

{  1 −1)ݓ− {(ଶݔ
ଵ
ଶ  

,
−1)ݒݓ (ݓ

{  1 − 1)ݓ − { (ଶݔ
ଷ
ଶ
ቍ 

 

           = ܽ
ା(ݓ)

!

ቀ݊ + ݎ + 1
2 ቁ


ቀ݊ + ݎ + 2

2 ቁ


(1− ߣ − ݊)
ାାଶܥ
ఒାି ݒ(ݔ)

ஶ

ୀ

ஶ

ୀ

 

 

           = ܽି
ݓ

!

ቀ݊ −  + ݎ + 1
2 ቁ


ቀ݊ −  + ݎ + 2

2 ቁ


(1− ߣ − ݊ + (
ାାܥ
ఒାିଶ(ݔ)ݒି.



ୀ

ஶ

ୀ

 

 
Therefore we have 

(1− ఒ  ି ଵଶ{ 1(ݓ − 1)ݓ − ܩଶ) }– ଶ – ఒݔ ൭
ݔ

{  1 1)ݓ− − {(ଶݔ
ଵ
ଶ  

,
−1)ݒݓ (ݓ

{  1 − 1)ݓ − { (ଶݔ
ଷ
ଶ
൱ 

 
 = ∑ ஶ,(ݒ,ݔ)ߪ ݓ

ୀ   
 
Where 

,ݔ)ߪ (ݒ = ∑ ܽ
ቀశೝశభమ ቁ

ష
ቀశೝశమమ ቁ

ష

(ି) !(ଵିఒି)ష
ଶାିܥ
ఒିାଶ(ݔ)

ୀ   .ݒ
 

Corollary 3:If we put ݎ = 0 in the above result, we get the Theorem 1. 
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