Majority Independence Number of a Graph

J. Joseline Manora and B. John

PG & Research Department of Mathematics, T.B.M.L College, Porayar, Nagai Dt., Tamilnadu, India. Department of Science and Humanities VelTech HighTech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai. johnvisle@gmail.com

Abstract

In this article majority independent set is introduced and majority independence number $\beta_M(G)$ is defined with examples. We discuss the relation between the majority domination number, independent majority domination number and majority independence number of a graph G.

Keywords: Majority independence number, Independent majority domination number.

I. Introduction.

By a graph, we mean a finite, simple graph which is undirected, nontrivial, without isolates. We follow the notation and terminology given by Haynes et. al [3]. Let G = (V, E) be a graph of order p and size q. For every vertex $v \in V(G)$, the open neighborhood $N(v) = \{ u \in V(G) / uv \in E(G) \}$ and the closed neighborhood $N[v] = N(v) \cup \{v\}$. Let S be a set of vertices, and let $u \in S$. The private neighbor set of u with respect to S is $pn[u, S] = \{v / N[v] \cap S = \{u\}\}$.

A set S of vertices in a graph G = (V, E) is a dominating set if every vertex vnot in S is adjacent to at least one vertex in S. A dominating set S is called a minimal dominating set if no proper subset of S is a dominating set. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of a minimal dominating set in G. The upper domination number $\lceil (G) \rangle$ of a graph G the maximum cardinality of a minimal dominating set in G. A set D of vertices in a graph G is called an independent set if no two vertices in D are adjacent. An independent set D is called a maximal independent set if any vertex set properly containing D is not independent. The independence number $\beta_{\alpha}(G)$ is the maximum cardinality of a maximal independent set in G. The lower independence number i(G) is the minimum cardinality of a maximal independent set of G. It is also called independent domination number of G.

Definition 1.1 [6]:

A subset $S \subseteq V(G)$ of vertices in a graph G is called majority dominating set if at least half of the vertices of V(G) are either in S or adjacent to the vertices of S. i.e.,

 $|N[S]| \ge \left\lceil \frac{p}{2} \right\rceil$. A majority dominating set *S* is minimal if no proper subset of *S* is a majority dominating set of G. The majority domination number $\gamma_M(G)$ of a graph G is the minimum cardinality of a minimal majority dominating set in G. The upper majority domination number $\left\lceil \frac{M}{M}(G) \right\rceil$ is the maximum cardinality of a minimal majority dominating set of a graph G. This parameter has been studied by Swaminathan V and Joseline Manora J.

II . Majority Independent Set.

Definition 2.1: A set S of vertices of a graph G is said to be a majority independent set (or MI-set) if it induces a totally disconnected subgraph with $|N[S]| \ge \left\lfloor \frac{p}{2} \right\rfloor$ and

 $|pn[v,S]| > |N[S]| - \left\lceil \frac{p}{2} \right\rceil$ for every $v \in S$. If any vertex set S' properly containing S is

not majority independent then S is called maximal majority independent set. The minimum cardinality of a maximal majority independent set is called lower majority independence number of G and it is also called independent majority domination number of G. It is denoted by $i_M(G)$. The maximum cardinality of a maximal majority independent set of G is called majority independence number of G and it is denoted by $\beta_M(G)$. A β_M -set is a maximum cardinality of a maximal majority independent set of G.

Observations 2.2:

- 1. Every independent set of G need not be a majority independent set of G.
- 2. By definition, any majority independent set is a majority dominating set of a graph G.

Remarks 2.3:

1. There may be maximal independent sets which are not majority independent sets of a graph G.

Example 2.3.1: Let $G = C_{10}$. $S = (v_1, v_4, v_7, v_9)$ is a maximal independent set but it is not a majority independent set for G, since every vertex of S satisfies the condition

 $|pn[v,S]| < |N[S]| - \left\lceil \frac{p}{2} \right\rceil.$

2. A maximal majority independent set need not be a maximal independent set of a graph G.

Example 2.3.2: Let $G = P_{11} \cdot S_1 = \{v_2, v_5, v_8\}$ is not a majority independent set since $|pn[v, S_1]| \le |N[S_1]| - \left\lceil \frac{p}{2} \right\rceil$, for $\forall v \in S_1 \cdot S_2 = \{v_2, v_5\}$ is a maximal majority independent set but S_2 is not a maximal independent set of G.

3. The relationship between $\beta_o(G)$ and $\beta_M(G)$ is $\beta_M(G) \le \beta_o(G)$, for any graph G.

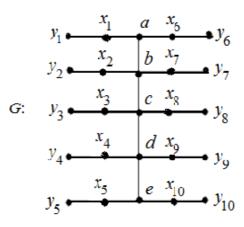
Example 2.3.3: Let $G = D_{5,4}$ be a double star with p = 11. Suppose $D = \{v_1, v_2, ..., v_9\}$, for each $v \in D$, |pn[v,D]| = 1 and $|N[D]| - \left\lceil \frac{p}{2} \right\rceil = 5$. D is a β_o -set of G but D is not a β_M -set. Hence, β_o -set is not a β_M -set of G. Suppose $S = \{v_1, v_2, ..., v_5\}$. Then for each $v \in S$, |pn[1,S]| = 1 and $|N[S]| - \left\lceil \frac{p}{2} \right\rceil = 0$. $\therefore |pn[v,S]| > |N[S]| - \left\lceil \frac{p}{2} \right\rceil \forall v \in S$. \therefore S is a majority independent set of G. Claim: S is maximal. Let $S^1 = S \cup \{v_6\}$. $|N[S^1]| - \left\lceil \frac{p}{2} \right\rceil = 2$ but $|pn[v,S^1]| = 1$ or $2 \le |N[S^1]| - \left\lceil \frac{p}{2} \right\rceil \forall v \in S^1$. \therefore S^1 is not a majority independent set of G. Hence S is a maximal majority independent set of G. Hence $\beta_M(G) < \beta_o(G)$.

Observations 2.4:

- **1.** For any graph G, $i_M(G) \le \beta_M(G)$.
- 2. If G has a full degree vertex then that vertex constitutes a majority independent set of G.

Examples 2.4.1:

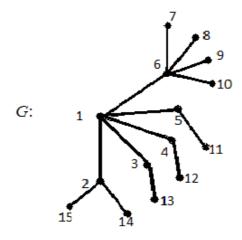
- 1. In G = $K_{1,6}$, Here $\beta_M(G) = 3$ and $i_M(G) = 1$ \therefore $i_M(G) < \beta_M(G)$
- 2. Let $G = K_p$. Then $i_M(G) = \beta_M(G) = 1$.
- 3. Let $G = T_{5k}$ and k = 5.



In $G = T_{25}$, $\gamma_M(G) = 4$, $i_M(G) = 4$, $\beta_M(G) = 7$ and $\beta_o(G) = 13$.

Proposition 2.5: For any graph G, $\gamma_M(G) \leq i_M(G)$.

Example 2.5.1:



 $\gamma_M(G) = 2, \ i_M(G) = 3.$

Theorem 2.6: Every graph G has a majority independent set.

Proof: By induction on order of G. If p=1 then $G=K_1$ and clearly G has a majority independent (MI) set namely V(G). If p=2, then $G=K_2$ or $\overline{K_2}$. Let $S=\{u_1\}$, $N[S] = \frac{p}{2} \cdot \left| pn[u_1,S] \right| > \left| N[S] \right| - \left[\frac{p}{2} \right]$. Therefore S is a MI-set of G. Induction hypothesis: Suppose for every graph G of order (p-1), $p \ge 2$, then G has a majority

independent set. Let G be a graph of order p. Let $v \in V(G)$. $G - \{v\}$ is of order (p-1) $\therefore G - \{v\}$ has a majority independent set say S. i.e., $|N[S]| \ge \left\lceil \frac{p-1}{2} \right\rceil$ and $|pn[v,S]| > |N[S]| - \left\lceil \frac{p-1}{2} \right\rceil$ (1) **Case (i):** p is even. Now (1) becomes $|N[S]| \ge \left\lceil \frac{p-1}{2} \right\rceil = \frac{p}{2} = \left\lceil \frac{p}{2} \right\rceil$. $|pn[v,S]| > |N[S]| - \left\lceil \frac{p-1}{2} \right\rceil = |N[S]| - \left\lceil \frac{p}{2} \right\rceil$. \therefore S is a majority independent set of G. **Case (ii):** p is odd then (p-1) is even. By (1) $|N_{G-\{v\}}[S]| \ge \left\lceil \frac{p-1}{2} \right\rceil$ and $|pn_{G-\{v\}}[u,S]| > |N_{G}[S]| - \left\lceil \frac{p-1}{2} \right\rceil \forall u \in S$. \therefore $|N_{G}[S]| \ge \left\lceil \frac{p-1}{2} \right\rceil$ and $|pn_{G}[u,S]| > |N_{G}[S]| - \left\lceil \frac{p}{2} \right\rceil \forall u \in S$.

Subcase (i): Suppose v is adjacent to S. Then $|N_G[S]| \ge \frac{p-1}{2} + 1 = \frac{p+1}{2} = \left|\frac{p}{2}\right|$. Also, $|pn_G[u,S]| > |N_G[S]| - \left[\frac{p}{2}\right]$, $\forall u \in S$. \therefore S is a majority independent set of G. **Subcase (ii):** Suppose v is independent of S.

Sub subcase (i): $|N_{G-\{\nu\}}[S]| > \frac{p-1}{2}$. Then $|N_G[S]| = |N_{G-\{\nu\}}[S]| > \frac{p-1}{2}$. $\therefore |N_G[S]| \ge \frac{p+1}{2} = \left\lceil \frac{p}{2} \right\rceil$. $|pn_G[u,S]| > |N_{G-\{\nu\}}[S]| - \left\lceil \frac{p-1}{2} \right\rceil > |N_G[S]| - \left\lceil \frac{p}{2} \right\rceil$ $\forall u \in S . \therefore S$ is a majority independent set of G.

Sub subcase (ii): $|N_{G-\{v\}}[S]| = \frac{p-1}{2}$. Let $S_1 = S \cup \{v\}$. S_1 is an independent set of G. $|N_G[S_1]| = |N_{G-\{v\}}[S]| + 1 = \left\lceil \frac{p-1}{2} \right\rceil + 1 = \frac{p+1}{2} = \left\lceil \frac{p}{2} \right\rceil$. $|N_G[S_1]| - \left\lceil \frac{p}{2} \right\rceil = 0$. Since $|pn_G[u, S_1]| = 1$ $\therefore |pn_G[u, S_1]| > |N_G[S_1]| - \left\lceil \frac{p}{2} \right\rceil \quad \forall u \in S_1$. $\therefore S_1$ is a

majority independent set of G. By induction, the proof is completed.

III . $\beta_{\scriptscriptstyle M}(G)$ for some standard graphs:

Computed values of $\beta_M(G)$ for some special classes graphs are stated without proof.

1. Let
$$G = P_p$$
, $p \ge 2$. Then $\beta_M(G) = \begin{cases} \left\lceil \frac{p}{4} \right\rceil if \ p \le 6. \end{cases}$
 $\left\lceil \frac{p-2}{4} \right\rceil if \ p > 6.$
2. Let $G = K_{1,p-1}$. Then $\beta_M(G) = \left\lfloor \frac{p-1}{2} \right\rfloor$.
3. Let $G = F_p$. Then $\beta_M(G) = \left\lceil \frac{p}{6} \right\rceil$.
4. Let $G = W_p$. Then $\beta_M(G) = \left\lceil \frac{p-2}{6} \right\rceil$.
5. Let $G = D_{r,s}$. Then $\beta_M(G) = \left\lceil \frac{p-2}{6} \right\rceil$.
6. Let $G = mK_2$. Then $\beta_M(G) = \left\lceil \frac{p}{2} \right\rceil - 1$ if $r < s$.
6. Let $G = mK_2$. Then $\beta_M(G) = \left\lceil \frac{p}{4} \right\rceil$.
7. Let $G = \overline{K_p}$. Then $\beta_M(G) = \left\lceil \frac{p}{2} \right\rceil$.
8. Let $G = H \circ K_1$, where H is a connected graph. Then $\beta_M(G) = \left\lceil \frac{p}{4} \right\rceil$.
9. Let $G = S(K_{1,p-1})$. Then $\beta_M(G) = \left\lceil \frac{p}{4} \right\rceil$.

10. Let $G = K_p$. Then $\beta_M(G) = 1$.

Proposition 3.1: Let G be a cycle of p vertices, $p \ge 3$. Then $\beta_M(G) = \left\lceil \frac{p}{6} \right\rceil$.

Proof: Let
$$\{v_1, v_2, \dots, v_p\}$$
 be a set of vertices of G. $d(v_i) = 2, \forall v_i \in V(G)$. Let $S = \{v_1, v_2, \dots, v_{\beta_M(G)}\}$ be a β_M -set of G. Then $|N[S]| \ge \left\lceil \frac{p}{2} \right\rceil$ and $|pn[v, S]| > |N[S]| - \left\lceil \frac{p}{2} \right\rceil$ for every $v \in S$. Then $|N[S]| \le \sum_{i=1}^{\beta_M(G)} d(v_i) + \beta_M(G)$.
 $\left\lceil \frac{p}{2} \right\rceil \le 3\beta_M(G)$. Then $\beta_M(G) \ge \left\lceil \frac{p}{6} \right\rceil$.
Let $D = \{u_1, u_2, \dots, u_{\left\lceil \frac{p}{6} \right\rceil + 1}\}$ with $N[u_i] \cap N[u_j] = \Phi$, $\forall i \ne j$.
 $\therefore |N[D]| = (d(u_i) + 1) \left(\left\lceil \frac{p}{6} \right\rceil + 1 \right) = 3 \left\lceil \frac{p}{6} \right\rceil + 3 > \left\lceil \frac{p}{2} \right\rceil$. Then for $\forall u \in D$,

$$|pn[u,D]| \le |N[D]| - \left\lceil \frac{p}{2} \right\rceil \Rightarrow D$$
 is not a majority independent set of G.
 $\therefore \beta_M(G) \le |D| = \left\lceil \frac{p}{6} \right\rceil + 1 = \left\lceil \frac{p}{6} \right\rceil$. Hence $\beta_M(G) = \left\lceil \frac{p}{6} \right\rceil$.

Proposition 3.2: Let $G = K_{m,n}$; $m \le n$. Then $\beta_M(G) = \begin{cases} 1 & \text{if } m = n, \ n+1, \ n+2. \\ \left\lceil \frac{p}{2} \right\rceil - m & \text{if } m < n. \end{cases}$

Proof: Let G be a complete bipartite graph with $V_1(G) = \{v_1, v_2, \dots, v_m\}$ and $V_2(G) = \{v_1, v_2, \dots, v_n\}$. Such that (m+n) = p.

Case (i): When n = m, m+1, m+2. Since all vertices are of degree $d(u) \ge \left| \frac{p}{2} \right| -1$, $D = \{u\}$ is a maximal majority independent set of G. Hence $\beta_M(K_{m,n}) = 1$.

Case (ii): When
$$m < n$$
 and $n \ge m + 3$. Let $S = \left(v_1, v_2, \dots, v_{\lfloor \frac{p}{2} \rfloor - m}\right) \subseteq V_2(G)$.

Then
$$|N[S]| = d(u) + |S|$$
 for any $u \in V_2(G)$
 $= |N[u]| + |S|$, $N[u] \subseteq V_1(G)$
 $= m + |S|$, where $|S| = \left\lceil \frac{p}{2} \right\rceil - m$
 $= m + \left\lceil \frac{p}{2} \right\rceil - m$
 $|N[S]| = \left\lceil \frac{p}{2} \right\rceil$. Then S is an independent set of G.
Next, since $|pn[v,S]| = |N[S]| - |N[S - \{v\}]|$, $|N[S - \{v\}]| = |N[S]| - |pn[v,S]|$
 $\therefore |N[S]| - |pn[v,S]| < \left\lceil \frac{p}{2} \right\rceil \implies |pn[v,S]| > |N[S]| - \left\lceil \frac{p}{2} \right\rceil$. By definition S is a prity independent set of C.

majority independent set of G.

Claim: S is maximal. Let $S^1 = S \cup \{u\}, u \in V - S$ and $S \subseteq V_2(G)$. **Subcase (i):** Let $u \in V - S \subseteq V_2(G)$. $|N[S^1]| = |N[S]| + |N[u]| = \left\lceil \frac{p}{2} \right\rceil + 1 \ge \left\lceil \frac{p}{2} \right\rceil$. Next, since $|pn[u, S^1]| = |N[S^1]| - |N[S^1 - \{u\}]|$

$$\left| pn\left[u,S^{1}\right] \right| = \left\lceil \frac{p}{2} \right\rceil + 1 - \left\lceil \frac{p}{2} \right\rceil = 1$$

$$\left| N[S^{1}] \right| - \left\lceil \frac{p}{2} \right\rceil = \left\lceil \frac{p}{2} \right\rceil + 1 - \left\lceil \frac{p}{2} \right\rceil = 1 = \left| pn[u,S^{1}] \right|$$

$$\therefore \left| pn\left[u,S^{1}\right] \right| = \left| N[S^{1}] \right| - \left\lceil \frac{p}{2} \right\rceil, \quad \forall \ u \in V_{2}(G) . \therefore S^{1} \text{ is not a majority independent}$$

$$f G$$

set of G.

Subcase (ii): Let $u \in V - S \subseteq V_1(G)$. Let $S^1 = S \bigcup \{u\} \Longrightarrow S^1$ is not an independent set of G. \therefore S^1 is not a majority independent set of G. Hence, S is a maximal majority independent set of G. $\therefore \beta_M(G) \ge |S| = \left\lceil \frac{p}{2} \right\rceil - m$.

Conversely, Suppose
$$S = \left\{ u_1, u_2, \dots, u_{\left\lceil \frac{p}{2} \right\rceil} \right\} \subseteq V_2(G)$$
. Then S is an independent set
and $|S| = \left\lceil \frac{p}{2} \right\rceil$. Now, $|N[S]| = \left\lceil \frac{p}{2} \right\rceil + m \ge \left\lceil \frac{p}{2} \right\rceil$. For $\forall u \in S$,
 $|pn[u,S]| = |N[S]| - |N[S-\{u\}]|$
 $= \left(\left\lceil \frac{p}{2} \right\rceil + m \right) - (m+|S|-1) = \left\lceil \frac{p}{2} \right\rceil - |S| + 1 = 1$.
Next, $|N[S]| - \left\lceil \frac{p}{2} \right\rceil = \left\lceil \frac{p}{2} \right\rceil + m - \left\lceil \frac{p}{2} \right\rceil = m, m \ge 1$. $\therefore |pn[u,S]| \le |N[S]| - \left\lceil \frac{p}{2} \right\rceil$,

 $\forall u \in S \subseteq V_2(G)$. \therefore S is not a majority independent set of G. Since $S \subseteq V_2(G)$, any vertex in $V_1(G)$ is not an element in S. Otherwise, S is not an independent set of G. Since $|N[S]| = \left\lceil \frac{p}{2} \right\rceil + m$, in order to decrease the order of |S|, now take $|S| = \left\lceil \frac{p}{2} \right\rceil - m$. Then, $|N[S]| = \left\lceil \frac{p}{2} \right\rceil$ and for $\forall u \in S$, $|pn[u,S]| > |N[S]| - \left\lceil \frac{p}{2} \right\rceil$. $\therefore \beta_M(G) \le \left\lceil \frac{p}{2} \right\rceil - m$. Combining these we get, $\beta_M(G) = \left\lceil \frac{p}{2} \right\rceil - m$, if $G = K_{m,n}, m < n$.

IV. Some results on majority independent sets.

Theorem 4.1: For any graph G, $\beta_M(G) = 1$ if and only if G has all vertices with $d(u) \ge \left\lceil \frac{p}{2} \right\rceil - 1$ for $\forall u \in G$.

Theorem 4.2: A majority independent set S of a graph G is maximal majority independent if and only if it is majority independent and majority dominating set of

G.

Proof: Let S be a maximal majority independent set of G. Then S is majority independent set and $|N[S]| \ge \left\lceil \frac{p}{2} \right\rceil \Longrightarrow S$ is a majority dominating set of G. Conversely,

S is both majority independent and majority dominating set. Then $|N[S]| \ge \left\lceil \frac{p}{2} \right\rceil$ and $|pn[v,S]| > |N[S]| - \left\lceil \frac{p}{2} \right\rceil$ for every $v \in S$. Then there $\exists u \in V - S$ such that $S \cup \{u\} = S^1$ with $|N[S']| > \left\lceil \frac{p}{2} \right\rceil$ then $|pn[v,S']| \le |N[S']| - \left\lceil \frac{p}{2} \right\rceil \forall u \in S'$. It implies that S^1 is

not a majority independent set. Hence S is a maximal majority independent set of G.

Theorem 4.3: Every maximal majority independent set of G is a minimal majority dominating set of G.

Proof: Let S be a maximal majority independent set of G. Then S is a majority dominating set. Suppose S is not minimal, there exists at least one $v \in S$ such that S- $\{v\}$ is a majority dominating set of G. $\Rightarrow |N[S - \{v\}]| \ge \left\lceil \frac{p}{2} \right\rceil$ Since S is maximal majority independent set of G, $|N[S]| \ge \left\lceil \frac{p}{2} \right\rceil$ and $pn[v,S] > |N[S]| - \left\lceil \frac{p}{2} \right\rceil$(1), for $\forall v \in S$, $and |pn[v,S]| \ge 1$. We know that, $pn[v,S] = N[S] - N[S - \{v\}] = |N[S - \{v\}]| = |N[S]| - pn[v,S] < |N[S]| - |N[S]| + \left\lceil \frac{p}{2} \right\rceil$ by (1). $\therefore |N[S - \{v\}]| < \left\lceil \frac{p}{2} \right\rceil \Rightarrow (S - \{v\})$ is not a majority dominating set, a contradiction. Hence S is minimal majority dominating set of G.

Proposition 4.4: For any graph G, $\gamma_M(G) \leq \beta_M(G)$.

Proof: Let S be a β_M - set of G. By theorem 4.3, then S is a minimal majority dominating set of G. Therefore $\gamma_M(G) \le |S| = \beta_M(G)$.

Proposition 4.5: For any graph G, $\gamma_M(G) \leq \iota_M(G) \leq \beta_M(G)$.

Proof: From Proposition 2.5 and Theorem 4.2.

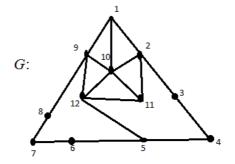
Example 4.5.1:

- 1. $\gamma_M(G) = i_M(G) = \beta_M(G) = 1 \ if \ G = K_p$.
- 2. For $G = C_{10}$, $\gamma_M(G) = i_M(G) = \beta_M(G) = 2$.

Proposition 4.6: For any graph G, $\gamma_M(G) \le i_M(G) \le \beta_M(G) \le \lceil_M(G) \rceil$.

Proof: Since every minimal majority dominating set with maximum cardinality of G is a majority dominating set of G, we get this result.

Example 4.6.1:



$$\gamma_M(G) = i_M(G) = 1, \quad \beta_M(G) = 2, \quad \boxed{}_M(G) = 3.$$

References:

- [1] Cockayne. E. J, Hedetniemi S. J, Towards a theory of domination in graphs, Networks-7(1977), 247 261.
- [2] Frank Harary, Graph Theory, Narosa Publishing House, New Delhi.
- [3] Haynes. T. W, Hedetniemi S. T and P. J. Slater, Fundamentals of domination in Graphs. Marcel Dekkar, New York, 1998.
- [4] Joseline Manora. J, Swaminathan. V, Results on majority dominating set, Science Magna, North – West University, X'tian, P. R. China, Vol7, No. 3(2011), 53 – 58.
- [5] Kulli. V. R, Theory of domination in Graphs, Vishwa International Publications, Gulbarga, India, 2010.
- [6] Swaminathan. V, Joseline Manora. J, Majority Dominating Sets of a graph, Jamal Academic Research Journal Vol. 3, (No.2), 75-82 (2006).

74