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ABSTRACT 
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1. INTRODUCTION 
The notion of k െnullity distribution of Riemannian manifolds was introduced by S. 
Tanno in 1988  ሾ8ሿ. The contact metric manifold where the characteristic vector field ߦ belongs to the k-nullity distribution is called Nሺkሻ െcontact metric manifold. Blair ሾ5ሿ and many others extensively studied Nሺkሻ െcontact metric manifolds. Friedman 
and Schouten [1] introduced the notion of semi-symmetric linear connection in a 
differentiable manifold and a systematic study of semi-symmetric metric connection 
on a Riemannian manifold was given by Yanoሾ2ሿ in 1970. Semi-symmetric metric 
connections on Riemannian manifolds are studied by authors ሾ3ሿ. The semi-
symmetric metric connection plays an important role in the study of Riemannian 
manifolds involving physical problems. This motivates us to study such connections 
in Nሺkሻ െcontact metric manifolds. 
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 This paper is organized as follows. We give some preliminary results in Section 2. 
In section 3 we present a brief information of Nሺkሻ െcontact metric manifolds 
admitting semi-symmetric metric connection.  
 In sections 4 and 5, we study M-projective curvature tensor and concircular 
curvature tensors on Nሺkሻ െcontact metric manifolds with respect to semi-symmetric 
metric connection by considering flat, Ricci-symmetry and ߶-recurrent conditions. 
The following table summarizes the results proved in this paper. 
 

Condition Result W෩ ,ሺXכ Yሻξ ൌ 0 k ൌ ଶଵି୬ and r෤ = ଶ୬ሺ୬ାଵሻଵି୬  W෩ .כ S෨ ൌ 0. k ൌ ସ୬మିସ୬ାଵଶ୬ሺସ୬ିଷሻ  and r෤ ൌ െ8nଶ ൅ 2n ൅ 1ሺ4n െ 3ሻ  ϕ െ recurrent k ൌ ସ୬ିଵଶ୬ and r෤ ൌ 2n െ 1
 
 
2. PRELIMINARIES 
In this section, some general definitions and basic formulas are presented which will 
be used later. A ሺ2n ൅ 1ሻ dimensional C∞-differentiable manifold M is said to admit 
an almost contact metric structure ሺϕ, ξ, η, gሻ if the following relations hold.  [6]. 
  ϕଶ ൌ െI ൅ η ۪ξ, ηሺξሻ=1, ηξ ൌ 0,ηοϕ ൌ 0.  (2.1)  
  gሺϕX, ϕYሻ ൌ gሺX, Yሻ െ ηሺXሻηሺYሻ (2.2) 
 gሺX, ϕYሻ ൌ െgሺϕX, Yሻ, gሺX, ϕXሻ ൌ 0, gሺX, ξሻ ൌ ηሺXሻ  (2.3) 
where ϕ is a tensor field of type (1, 1), ξ is a vector field, η is a 1-form and g is a 
Riemannian metric on M. A manifold equipped with an almost contact metric 
structure is called an almost contact metric manifold. An almost contact metric 
manifold is called a contact metric manifold if it satisfies 
 gሺX, ϕYሻ ൌ dηሺX, Yሻ  (2.4)  
for all vector fields X, Y. The (1, 1) tensor field h defined by h ൌ ଵଶ Lξϕ, where L 
denotes the Lie differentiation, is a symmetric operator and satisfies 
  ݄߶ ൌ ߶݄, ݄ݎݐ ൌ ݄߶ݎݐ ൌ 0, ߦ݄ ൌ 0.  (2.5) 
 Further we have [5],  
Xξ׏   ൌ െϕX െ ϕhX, ሺ׏XηሻY ൌ gሺX ൅ hX, ϕYሻ (2.6) 
where r denotes the Riemannian connection of ݃. 
 The k-nullity distribution Nሺkሻ of a contact metric manifold M  [4] is defined by 
 Nሺkሻ: p ՜ N୮ሺk,μሻ ൌ ሼZ א T୮ሺMሻ: RሺX, YሻZ ൌ kሾgሺY, ZሻX െ gሺX, ZሻYሿሽ  (2.7) 
 k being a constant. If the characteristic vector field ξ א Nሺkሻ, then the contact 
metric manifold is called a Nሺkሻ-contact metric manifold  [7].  
 In a ሺ2n ൅ 1ሻ-dimensional Nሺkሻ-contact metric manifold, the following relations 
hold.  [8, 9, 10]:  
  hଶ ൌ ሺk െ 1ሻϕଶ, k ൑ 1  (2.8)  
 ሺ׏XϕሻሺYሻ ൌ gሺX ൅ hX, Yሻξ െ ηሺYሻሺX ൅ hXሻ,  (2.9)  
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  RሺX, Yሻξ ൌ kሾηሺYሻX െ ηሺXሻYሿ  (2.10)  
 SሺX, Yሻ ൌ 2ሺn െ 1ሻgሺX, Yሻ ൅ 2ሺn െ 1ሻgሺhX, Yሻ ൅  
 ሾ2ሺ1 െ nሻ ൅ 2nkሿηሺXሻηሺYሻ (2.11) 
  SሺX, ξሻ ൌ 2nkηሺXሻ  (2.12) 
  r ൌ 2nሺ2n െ 2 ൅ kሻ  (2.13) 
 SሺϕX, ϕYሻ ൌ SሺX, Yሻ െ 2nkηሺXሻηሺYሻ െ 4ሺn െ 1ሻgሺhX, Yሻ  (2.14) 
  ሺ׏XηሻሺYሻ ൌ gሺX ൅ hX, ϕYሻ  (2.15) 
 ηሺRሺX, YሻZሻ ൌ kሾgሺY, ZሻηሺXሻ െ gሺX, ZሻηሺYሻ  (2.16) 
where Q, S and r are respectively the Ricci operator, the Ricci tensor and the scalar 
curva-ture of Mଶ୬ାଵ. 
 The M-projective curvature tensor Wכ in Mଶ୬ାଵ is given by  [12] 
 WכሺX, YሻZ ൌ RሺX, YሻZ െ ଵସ୬ ሾSሺY, ZሻX െ SሺX, ZሻY ൅ gሺY, ZሻQX െ gሺX, ZሻQYሿ  (2.17) 
 
 
-ା૚ ADMITTING SEMIܖ૛ۻ ሻ-CONTACT METRIC MANIFOLDܓሺۼ .3
SYMMETRIC METRIC CONNECTION 
Let ׏෩ be a linear connection on ሺ2n ൅ 1ሻ െ dimensional differential manifold Mଶ୬ାଵ. 
The torsion tensor T is given by 
 T෩ሺX, Yሻ ൌ ෩XY׏ െ ෩YX׏ െ ሾX, Yሿ. 
 The connection ׏ ෩  is symmetric if its torsion tensor vanishes. If ׏෩g ൌ 0, where g is 
a Riemannian metric on Mଶ୬ାଵ, then connection ׏෩ is called a metric connection[2]. A 
linear connection is said to be a semi-symmetric connection in a Riemannian manifold 
if its torsion tensor 
  T෩ሺX, Yሻ ൌ πሺYሻX െ πሺXሻY,  (3.1)  
where ߨ is a 1-form defined by ߨሺܺሻ  ൌ  ݃ሺܺ,  .is a vector field ߩ ሻ andߩ
A semi-symmetric metric connection in an almost contact metric manifold is defined 
by 
  T෩ሺX, Yሻ ൌ ηሺYሻX െ ηሺXሻY  
where ηሺYሻ ൌ gሺY, ξሻ. 
 A relation between the semi-symmetric connection ׏෩ and Levi-Civita connection ׏ of Mଶ୬ାଵ is given by [3]. 
෩XY׏  ൌ XY׏ ൅ ηሺYሻ െ gሺX, Yሻξ, ηሺYሻ ൌ gሺY, ξሻ. 
 Further a relation between the curvature tensor R and R෩ of type (1, 3) of the 
connections ׏ and ׏෩ respectively [3] is given by 
 R෩ሺX, YሻZ ൌ RሺX, YሻZ െ LሺY, ZሻX ൅ LሺX, ZሻY െ gሺY, ZሻFX ൅ gሺX, ZሻFY,  (3.2) 
where L is a tensor field of type (0; 2) given by 
 LሺY, Zሻ ൌ ሺ׏YηሻሺZሻ െ ηሺYሻηሺZሻ ൅ ଵଶ gሺY, Zሻ ൌ ሺ׏ഥYηሻሺZሻ െ ଵଶ gሺY, Zሻ,  (3.3) 
and F is a tensor field of type (1, 1) given by gሺFY, Zሻ ൌ LሺY, Zሻ for any vector fields 
Y, Z. 
  Rഥ ሺX, YሻZሻ ൌ R ሺX, YሻZ െ gሺY ൅ hY, ϕZሻX ൅ gሺX ൅ hX, ϕZሻY ൅ gሺY, ZሻሺϕX ൅ ϕhXሻ െ 
 gሺX, ZሻሺϕY ൅ ϕhYሻ ൅ ηሺYሻηሺZሻX െ ηሺXሻηሺZሻY ൅ ηሺXሻgሺY, Zሻ 
 ξ െ ηሺYሻgሺX, Zሻξ െ gሺY, ZሻX ൅ gሺX, ZሻY.  ሺ3.4ሻሻ  
 From (2.10) and (3.4), we have  
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 RഥሺX, Yሻξ ൌ kሾηሺYሻX െ ηሺXሻYሿ ൅ ηሺYሻሺϕX ൅ ϕhXሻ െ ηሺXሻሺϕY ൅ hY)  (3.5) 
 RഥሺX, ξሻY ൌ kሾηሺYሻX െ gሺX, Yሻξሿ ൅ gሺX ൅ hX, ϕYሻξ ൅ ηሺYሻሺϕX ൅ ϕhXሻ,  (3.6)  
 Rഥሺξ, Xሻξ ൌ kሾηሺYሻξ െ Yሿ െ ሺϕY ൅ ϕhYሻ,  (3.7) 
 On contracting (3.4), we get 
 SതሺY, Zሻ ൌ SሺY, Zሻ െ ሺ2n െ 1ሻሾgሺY ൅ hY, ϕZሻ െ ηሺYሻηሺZሻ ൅ gሺY, Zሻሿ  (3.8) 
where Sത and S are Ricci tensors of the connections ׏ഥ and ׏ respectively. 
 QഥሺYሻ ൌ QY െ ሺ2n െ 1ሻሾെሺϕY ൅ ϕhYሻ െ ηሺYሻξ ൅ Yሿ,  (3.9) 
whwhere Qഥ and Q are Ricci operators of the connections ׏ഥ and ׏ respectively. 
 SതሺY, ξሻ ൌ 2nkηሺYሻ.  (3.10) 
 Again contracting (3.8) over Y, Z, we get 
 rҧ ൌ r െ ሺ2n െ 1ሻ2n,  (3.11) 
 By virtue of (2.15), (3.11) yields 
  rҧ ൌ 2nሺk െ 1ሻ.  (3.12)  
where rҧ and r are scalar curvatures of the connections ׏ഥ and ׏ respectively 
 
 
 ሺ࢑ሻ-CONTACTࡺ െPROJECTIVE CURVATURE TENSOR IN AN ࡹ .4
METRIC  
MANIFOLD ADMITTING SEMI-SYMMETRIC METRIC CONNECTION 
The ܯ െProjective curvature tensor in an ܰሺ݇ሻ െcontact metric manifold ܯ^ሺ2݊ ൅1ሻ with respect to semi-symmetric metric connection is given by 
 Wഥ ,ሺXכ YሻZ ൌ RഥሺX, YሻZ െ ଵସ୬ ሾ SതሺY, ZሻX െ SതሺX, ZሻY ൅ gሺY, ZሻQഥX െ gሺX, ZሻQഥYሿ  (4.1)  
  From(3.5), (3.6), (3.8) and  (4.1),  we have 
 Wഥ ,ሺXכ Yሻξ ൌ ୩ଶ ሾηሺYሻX െ ηሺXሻYሿ ൅ ηሺYሻሺϕX ൅ ϕhXሻ െ ηሺXሻ 

 ሺϕY ൅ ϕhYሻ െ ଵସ୬ ሾηሺYሻQഥX െ ηሺXሻ  (4.2) 
 Wഥ ,ሺξכ YሻZ ൌ െkሾηሺZሻY െ gሺY, Zሻξሿ െ gሺY ൅ hY, ϕZሻ  
 ξ െ ηሺZሻሺϕY ൅ ϕhYሻ ൅ ଵସ୬ ሾ2nkηሺZሻY െ SതሺY, Zሻξ ൅ ηሺZሻQഥY െ 2nkgሺY, Zሻξሿ, (4.3)  
 ηሺWഥ ,ሺξכ YሻZሻ ൌ െkሾηሺZሻηሺYሻ െ gሺY, Zሻሿ െ gሺY ൅ hY, ϕZሻ  
 ൅ ଵସ୬ ሾ4nkηሺZሻηሺYሻ െ SതሺY, Zሻ െ 2nkgሺY, Zሻሿ (4.4) 
and 
 ηሺWഥ ,ሺXכ YሻZሻ ൌ ୩ଶ ሾgሺY, ZሻηሺXሻ െ gሺX, ZሻηሺYሻሿ െ ଵସ୬ ሾSതሺY, ZሻηሺXሻ െ SതሺX, ZሻηሺYሻሿ 
  െgሺY ൅ hY, ϕZሻηሺXሻ ൅ gሺX ൅ hX, ϕZሻηሺY ሻ  (4.5) 
 
Definition 1. An ܰሺ݇ሻ െcontact metric manifold ܯଶ௡ାଵ is  
(1)M-projectively flat with respect to semi-symmetric metric connection if  Wഥ ,ሺXכ Y, Z, Uሻ ൌ 0.  
(2)ξ െ M-projectively flat with respect to semi-symmetric metric connection if Wഥ ,ሺXכ Yሻξ ൌ 0.  
 projectively Ricci-symmetric with respect to semi-symmetric metric connection-ܯ (3)
if Wഥ .כ Sത ൌ 0. 
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projective ϕ – ܯ (4) െ recurrent with respect to semi-symmetric metric connection if 
and only if there exists a 1- form ܣ such that ϕଶ൫ሺ׏UWഥ ,ሻሺXכ YሻZ൯ ൌ AሺUሻWഥ ,ሺXכ YሻZ. 
 
Definition 2. A contact metric manifold is said to be (i) Einstein if SሺX, Y ሻ  ൌ λgሺX, Y ሻ, where λ is a constant, (ii) η -Einstein if SሺX, Y ሻ ൌ α gሺX, Y ሻ ൅ β ηሺXሻ ηሺY ሻ, where α and β are smooth functions. 
 Suppose is Mଶ୬ାଵ is ξ-M- projectively flat. i.e. 
  Wഥ ,ሺXכ Yሻξ ൌ 0   (4.6)  
 Then in view of (4.1), we have 
 RഥሺX, Yሻξ ൌ ଵସ୬ ሾSതሺY, ξሻX െ SതሺX, ξሻY ൅ ηሺYሻQഥ X െ ηሺXሻQഥY]  (4.7)  
 By virtue of (3.5), (3.10) and (4.2), above equation reduces to 
  ୩ଶ ሾηሺYሻX െ ηሺXሻYሿ ൅ ηሺYሻሺϕX ൅ ϕhXሻ െ ηሺXሻ  
 ሺϕY ൅ ϕhYሻ ൌ ଵସ୬ ሾηሺYሻQഥX െ ηሺXሻQഥYሿ. (4.8)  
 Putting Y ൌ ξ and using (3.12), (4.17) reduces to  
  QഥX ൌ 2nkሾX െ ηሺXሻξሿ ൅ 4nሺϕX ൅ ϕhXሻ ൅ 2nkηሺXሻξ.  (4.9) 
 Contracting the above equation with W, we get 
  SതሺX, Wሻ ൌ 2nkሾgሺX, Wሻ െ ηሺXሻηሺWሻሿ 
 ൅4ngሺϕX ൅ ϕhX, Wሻ ൅ 2nkηሺXሻηሺWሻ.  (4.10) 
 Let ሼe୧ሽ be an orthonormal basis of the tangent space at any point. Putting X ൌ W ൌ e୧ in the above equation and summing over i, 1 ൑ i ൑ 2n ൅ 1, we get 
  k ൌ ଶଵି୬   (4.11)  
 Then from (3.11), we obtain 
  rҧ ൌ ଶ୬ሺ୬ାଵሻଵି୬   (4.12)  
 Since k ൌ 1 in (4.20) leads to n ൌ െ1, Mଶ୬ାଵ must be non-Sasakian. Thus we can 
state that 
 
Theorem 4.1 In a ξ-M-projectively flat non-Sasakian N(k)-contact metric manifold 
admitting semi-symmetric metric connection, we have k ൌ ଶଵି୬ and rҧ ൌ ଶ୬ሺ୬ାଵሻଵି୬ . 
 Since a M-projectively flat N(k)-contact metric manifold is always ξ-M-
projectively flat, we have 
 
Corollary 4.1. In an M-projectively flat non-Sasakian N(k)-contact metric manifold 
admitting semi-symmetric metric connection, we have k ൌ ଶଵି୬ and rҧ ൌ ଶ୬ሺ୬ାଵሻଵି୬ . 
 Suppose Mଶ୬ାଵis M-projectively Ricci-symme tric. i.e. 
  Wഥ .כ Sത ൌ 0.  (4.13) 
 In this case, we can write 
  SതሺWഥ ,ሺUכ XሻY, Zሻ ൅ SതሺY, Wഥ ,ሺUכ XሻZሻ ൌ 0.  (4.14)  
 Taking U ൌ Z ൌ ξ in (4.14) and using (3.10), (3.12) and (4.3), we have  
 nkଶgሺX, Yሻ ൅ ୩ሺଶ୬୩ାଵሻଶ ηሺXሻηሺYሻ െ ସ୬୩ାଵସ୬ SതሺX, Yሻ 
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 ൅ ሺଶ୬ାଵሻସ୬ SതሺϕX ൅ ϕhX, Yሻ ൅ ଶሺ୬ିଵሻସ୬ SതሺhX, Yሻ ൌ 0.  (4.15)  
 Replacing Y by ϕY in (4.15), we obtain 
 nkଶgሺX, ϕYሻ െ ସ୬୩ାଵସ୬ SതሺX, ϕYሻ െ ଶ୬ାଵସ୬ SതሺϕX ൅ ϕhX, ϕYሻ 

 ൅ ଶሺ୬ିଵሻସ୬ SതሺhX, ϕYሻ ൌ 0.  (4.16) 
 Let ሼe୧ሽ be an orthonormal basis of the tangent space at any point. Setting X ൌY ൌ e୧ in the above equation and summing over, 1 ൑  i ൑ 2n ൅  1, we obtain 
  k ൌ ସ୬మିସ୬ାଵଶ୬ሺସ୬ିଷሻ .  (4.17) 
 Then from (3.11), we obtain 
  rҧ ൌ ି଼୬మାଶ୬ାଵସ୬ିଷ   (4.18)  
 Thus we have 
 
Theorem 4.2. In an ܯ െprojectively Ricci-symmetric ܰሺ݇ሻ-contact metric manifold 
admitting semi-symmetric metric connection, ݇ and ݎҧ are given by (4.17) and (4.18) 
respectively.  
 Suppose Mଶ୬ାଵ is ϕ-recurrent, then we have 
  െሺ׏UWഥ ,ሻሺXכ YሻZ ൅ η൫ሺ׏UWഥ ,ሻሺXכ YሻZ൯ ൌ AሺUሻWഥ ,ሺXכ YሻZ. (4.19)  
 Contracting (4.19) with ξ, we obtain  
  AሺUሻηሺWഥ ,ሺXכ YሻZሻ ൌ 0.   (4.20)  
 Since ܣ is a non-zero 1-form, we have 
  ηሺWഥ ,ሺXכ YሻZሻ ൌ 0.  (4.21) 
 Using (4.5), the above equation yields 
 Kଶ ሾgሺY, ZሻηሺXሻ െ gሺX, ZሻηሺYሻሿ െ ଵସ୬ ሾSതሺY, ZሻηሺXሻ െ SതሺX, ZሻηሺYሻሿ 
 െgሺY ൅ hY, ϕZሻηሺX ሻ ൅ gሺX ൅ hX, ϕZሻηሺYሻ ൌ 0  (4.22)  
 Taking X ൌ ξ in (4.22) and using (3.10), we get 
  SതሺY, Zሻ ൌ 2nkgሺY, Zሻ െ 4ngሺY ൅ ϕY, ϕZሻ.  (4.23)  
 Let ሼe୧ሽ be an orthonormal basis of the tangent space at any point. Taking Y ൌ Z ൌ e୧ in the above equation and summing over i, 1 ൑ i ൑ 2n ൅ 1, we get 
  k ൌ ସ୬ିଵଶ୬    (4.24) 
 Plugging this in (3.11), we obtain 
  rҧ ൌ 2n െ 1  (4.25)  
 Thus we state that 
 
Theorem 4.3. In an M-projectively ߶-recurrent N(k)-contact metric manifold with 
respect to semi-symmetric metric connection, we have k ൌ ସ୬ିଵଶ୬  and rҧ ൌ 2n െ 1. 
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