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Abstract

In this paper, a new theorems on degree of approximation of a function f
conjugate to a 27 periodic function f, belonging to Lip(&(t),r) class by
(C,1)(E,1) product means of conjugate Fourier series have been established.
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1. Introduction:
Let f(xX) be periodic with period 2z and integrable in the sense of Lebesgue. The
Fourier series of f(x) isgiven by

f(x)~%ao+i(a11 cosnx+ b, sinnx) (1.1)

n=1
with n" partial sums s_(f; ).
The conjugate series of the Fourier series (1.1) is given by

i (a, sinnx— b, cosnx) (1.2)

n=1
with n" partial sums s (f;x)and we shall call it as conjugate Fourier series through

out the paper..
L. —normof afunction f : R— Risdefined by | f|_= sup{f(x)]: xe R}
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1

2z T
L, —norm s defined by | f|| :(.ﬂf(x)rdxj r>1 (1.3
0
The degree of approximation of a function f:R— Rby a trigonometric
polynomial t, of order nunder sup norm | |_ is defined by Zygmund[13] and is given
as
It, - f]_ = sup{[t,(x)— f(x): xe R} (1.4)
and E (f) of afunction f e L, isgiven by
E,(f)=minft, - f] . (L5)
A function f € Lipe if
f(x+t)— f(x)=0([{") for 0<er <1 (1.6)

f(x)e Lip(a,r) if

(T|f(x+t)—f(x)|rdxjr:O(|t|“), O<a<1 andr>1 (17)

(definition 5.38 of Mc Fadden [7], 1942).
Given a positive increasing function£(t) and aninteger r >1, f(x)e Lip(&(t),r)
if

ff £ crt) f(xrdxjr - olét) w8

If £(t)=t* then Lip(&(t),r) class coincides with the class Lip(e,r) and if r — oo
then Lip(e, 1) reduces to the class Lipa.
Let iun be a given infinite series with the sequence of its n" partial sums {s, }.

n=0

The (C, 1) transform is defined as the n" partial sum of (C, 1) summability

f_SFS TS T +5,
"o n+1

1 n
= — sas n—oo 1.10
g ;sK - - (1.10)
then the series iun is summable to s by (C,1) method.
n=0

,_1g(n
If (E)=E =—->| |sc—>sas noe. (1.11)

2" = Kk

then the infinite series iun is said to be summable (E,1) to the definite number s
n=0
(Hardy [3)]).
The (C,1) transform of the (E,1) transform defines (C,1)(E,1) transform of the
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partial sum s, of series ZUn and we denote it by (CE):.
n=0

Thus if
(CE), =

n

D> Ei—>s as n—oo
n+1i=3
1

-

n k k
:i { kZ( j}%s, as N — oo (1.12)
n+1iz| 2° 7=\Vv

where E' denotes the (E,1) transform of s, and C. denotes (C,1) transform of s,
then the series ZUn is said to be summable by (C,1)(E,1) method or summable
n=0

(C,D(E,1) to adefinite number s.
We use the following notations:

w(t)= f(x+t)+ f(x—t)
7 = Integral part of % :[ﬂ

2.Main Theorems:
A good amount of work has been done on degree of approximation of functions

belonging to Lipa, Lip(e,r), Lip(&(t),r) classes using Cesaro, Nérlund and
generalised Norlund single summability methods by a number of researchers like
Alexits[1], Sahney and Godl [12], Qureshi and Neha [10], Quershi [8,9], Chandra[2],
Khan [4], Leindler [6] and Rhoades [11]. But till now nothing seems to have been
done so far in the direction of present work. Therefore, in present paper, atheorem on
degree of approximation of a function f, conjugate to a 27 periodic function f
belonging to Lip(&(t),r) class using (C,1)(E,1) product summability means of
conjugate Fourier series have been established in the following form:

2.1. Theorem.
If f isa 2x-periodic function, Lebesgue integrable on [0,27], belonging to the

Lip(&(t),r classthen its degree of approximation by (C,1)(E,1) summability means of
its conjugate Fourier seriesis given by

feer - o] ~clmvie 25| @

provided &(t) satisfies the following conditions:
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f[MJ dtl = o(i) 2.2)

o &) n+1
and
1
T t5|¢(tljr s
—A 1l dty =0y(n+1) (2.3)
&3 Ly
n+l
where ¢ is an arbitrary number suchthat 0= ds+1<s, 1,1_;, conditions (2.2) and

r s

(2.3) hold uniformly in x and (CE)* is (C,1)(E,1) means of the series (1.2) provided

2° zn‘,zk =0(n+1) (2.4)
and -
(x)= —ijfl//(t)cotlt dt (2.5)
2 2

3. Lemmas: For the proof of our theorem, following lemmas are required:

Lemma 1: Rn(t):O[}j for 0<t<——
t n+1

Proof: For Ogtgniﬂ’ sin(t/2)=(t/z) and|cosnt|<1

e

sin(t/2)
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Lemma?2: For 0<a<b<e, 0<t< 7z andany n, we have
e 7 4 i «
Knlt)=O| —— [+ O 1+ 1+

0= g [ o s e

Proof: For osismﬂ, sin(t/2)>(t/x)
n+1

1 -1 1 Kk k _ 1 -1 1 k k _
—R elvt < - elvt
2t(n+1)§{2" e{;(vj } 2t(n+1) k_ozk;(vj
1 7-1 1 k (k
< —
2t(n+1)§{ 2"; 4 }
7-1
__1 1
2((n+1)i=
T

19

(3.2)
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,z.2

Now considering second term of (3.1) and using Abel’s Lemma

{n+1 kzz_lk} (3.3)
Combining (31), (32) and (33) we ge.
( J (n+121kz;2J (3.4

4. Proof of the Theorem:
Let sa(f;x) denote's, the n" partial sum of the series (1.2). Then following Lal[5], we
have

1
. co{ th
s(f;%)— :—J. — = dt
sint
2

Therefore using (1.2), the (E,1) transform E; of en(f ;X) is given by

& T ]l

Now denoting (C, 1)(E 1) transformof s, by (CE)! , wewrite

n |z 1 k (k 1
(CE) - Tl 2z(n+1 kz{ sin(t/2) 2¢ {Z(VJCO{VJFE}}O@

1
n+1l

w(t) = | +
0

w(t)Ka(t)dt

O
‘H'-—-hl

=1, +1, (say) 4.2)

We consider,
1

n+l o
] < [jwo) \Kn(t)\ dt
0
Using Holder’ s inequality and the fact that w(t) € Lip(&(t),r),

>
F
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&(t)
:O[niljiﬂ{g(t)‘tm(t) }Sdt | by (22)
SERIEE o

Since £(t) is apositive increasing function and using second mean value theorem
for integrals,

1
1

m S
,=0 ij f[ij J‘% forsorne0$e<i
n+1) "(n+1)J| 4t n+1

1
1 s

R GLE oy
n+1 n+1 —-2s+1 .
{ n+1j n+1 H(n+1) S}

{n+1 } °.-E+§:1 (4.2

r
Using Holder’s mequahty,

4
12| <
1

n+l

T |l//( )| T |l//( )| T k
= 2°» 27
122 =0 Jt 2nep) | T O Jt (n+1) kZ o
n+l n+l
=0(l,,,)+0(l,,,) (say) (4.3)
Using Holder’ s inequality and Leema 5,
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n+l
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Hare Krishna Nigam

}dt

_SJ+D)? ] 5 Em)
_o{ 7 } Ht”} dt| by (2.3)
Now putting t = 1,
y
_ T
w4 o

2

()] y

N re—7
i

Since £(t) is apositive increasing function and using second mean value theorem

for integrals,
Gall!

1521 = O{(n-”y
15 1 n+1 d é
Ml

n+1
[ ys(2—5)—1 ntl s
{ S(2-90) - 1} L

i (2-6)-+
(n+1) s

T

for 1<1£ n+1.
T

dy

1
ooz | forsome —<p<n+l

V4

y

—_ 1 1 P T —
—O{(n+1)r §(m } = +s_1
1 1
|2_2_1:O —+—=1 4.4
Ln+1)” rs 44

Similarly,
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s s

T O e
1 7y () =
|I2'2'2|S[n+1j@{ 40) }dt} ! {0 a

n+l n+l

o [

n+l

S

{j{%} dt] by (2.4)

<

155, = O{(n + 1)5

—
ﬁ\'ﬂ"—az
T
/N
< [P
N
7]
Q.
<
7]

Since £(t) is apositive increasing function and using second mean value theorem
for integrals,

1
n+1 s
1222 = O{(n"‘l)s é:( : J}l: .[ s(gyl)+2:| for some L sn<n+l

n+1)f| )y T
oftest oy [ 2] o Leremn
:o{<n+1>55[nilj}:{s(f_a;il}:ﬁr
_ O{(n + 1)54:[”%1}:(n +1) Mi}
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ol o]

:O{(n+1) S{LJ} = %= (45)

n+1 r
Combining (4.1) to (4.5),
‘(CE)ﬁ - T(x)( = O{(n + 1)% S{n%lj}

Now using L,- norm we get,
1

| {zj (CE): —f(){ol}r

o ﬁ{<n+l):g(ni+lj}rdx}

e

This completes the proof of theorem.

5. Applications:
The following corollaries can be derived from our main theorem:

Corollary 1. If §(t):t”’, O0< a <1, then the classLip(&(t),r), r =1, reduces to the
class Lip(e,r) and the degree of approximation of a function f, conjugate to a

periodic function f € Lip(e,r), ?1< o <1, isgiven by

(€)= O[#}
(n+1)"r

Proof:
We have

ey -] ~of fieer -/ o

or
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1

{(n +1)r g(niﬂj} - o{ 2f(CE)ln —T‘r dx}r

or
O(l):O{T(CE)ﬁ —7‘rdx}r 0 11 -
0 (n+1)r§( j
n+1
Hence
T 7| c 1
(CE)! - f|= O{(n+1)r §(n+1j}

for if not the right-hand side will be O(1), therefore

(CE): — Tl = o{[n%l)a (n+ 1)3}
(n+2)*r

Corollary 2: If r — < in corollary 1, then the classLip(e,r) reduces to the Lipa

class and the degree of approximation of a function f, conjugate to a periodic
function f € Lipa, 0<a <1 isgiven by

]

Remark: An independent proof of above corollaries 1 can be obtained along the same
lines of our theorem.

e -7
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