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Abstract

The concept of an intuitionistic fuzzy set, which is a generalization of the
concept of a fuzzy set, was introduced by Krassimir T. Atanassov in 1986. In
this article, we study about the intuitionistic fuzzy submodule (IFSM)
generated by an intuitionistic fuzzyset (IFS) in an R -module M and
investigate some related properties. Also we discuss the notion of equivalent
intuitionistic fuzzy sets in an R-module M .
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1 Introduction
As a generalization of a fuzzy set, the concept of an intuitionistic fuzzy set was
introduced by K. T. Atanassov [1,2]. Applying this concept to algebra, B. Davvas-
etal. [3] established the intuitionistic fuzzification of the concept of submodules of
an R-module. In this paper , in section 2 we give the essential preliminaries and in
section 3 we introduce intuitionistic fuzzy submodule generated by an intuitionistic
fuzzy set in an R-module M and using this concept we investigate some related
properties. In section 4 we study the notion of equivalent intuitionistic fuzzy sets in an
R-module M and prove some results.

Throughout this paper, we denote by I the unit interval [0, 1], by R a commutative
ring with unity 1 and by M a unitary R- module. v denotes the maximum, and A the
minimum in the unit interval [0, 1].
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2 Preliminaries

In this section we give some basic definitions and results which are used in the sequel.
For knowledge regarding modules and fuzzy modules we refer the books by
Hungerford [4] and Mordeson & Malik [6] respectively.

2.1. Definition ([1]). An intuitionistic fuzzy set (in short IFS) A in a nonempty set X
is an object having the form A = {(x, us(x),v,(x)) / x € X } where the functions
Us X = Iand v, : X — I denote respectively the degree of membership (namely
U (x) ) and the degree of non-membership (namely v, (x) ) of each element x € X to
the set A, and 0 < p,(x) +v,(x) <1forall x € X.

For the sake of simplicity, we will denote the set of all IFS’s in X as IFS(X).

2.2. Definition ([1]). Let X be a non-empty set and A = (uy, v4) , B = (ug, vg) be
IFS’s in X. Then

1. A cBifandonlyif pu,(x) <ug(x) and v,(x) = vp(x) forall x € X

2. A=B ifandonlyif u,(x) =puz(x) and v,(x) = vg(x) forall x € X

3. A°=(va Ma)

4. A nB={(x, ua(x) Apg(x), va(x) vvp(x)) : x € X}

5. AUB ={(x, ua(x) v ug(x), va(x) Avg(x)) : x € X}

2.3. Definition ([7]). A fuzzy set u in M is called a fuzzy submodule of M if for every
X,Y €M and r € R, the following conditions are satisfied

1. u(0)=1

2. ulx+y) = pulx) Auly)

3. u(rx) = pu(x)

2.4. Definition ([3]). Let M be a module over aring R. An IFS A = (uy, v4) inM
is called an intuitionistic fuzzy submodule (IFSM) of M if

us (0)=1 and v,4(0) =0

pa(x +y) = pg(x) A pg(y) vx,yEM

vax +y) < vu(x) v u(y) vx,yeM

pa(rx) > pu(x) VxeM, Vr €R

vu(rx) < vy(x) VXEM, Vr€R

SR .

Remark. By saying that A = (u,, v,) is an intuitionistic fuzzy module (IFM) we
mean that A = (uy, v,) is an intuitionistic fuzzy submodule of some R-module M,
denote as A € IFSM(M).

2.5. Definition ([5]). Let X be a non-empty set and A = (uy, v4) be an IFS in X, and
a, [ € [0,1] be such that a + f < 1. Then the (a, 8)-level set of A is defined as

Agpy={x €X: ny(x) 2 a, v4(x) < B}

2.6. Definition ([9]). Let X be a non-empty set. The intuitionistic fuzzy point 1{0} in X
is defined as 1ry = (3, V1, ) Where
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_ (1 ifx=0 _ (0 ifx=0
Hig (¥) = {o ifx =0 & vig ()= {1 ifx=0 "YXEX
2.7. Definition ([9]). Let A; = (ua,, va,) (i €J,1J1 > 1), be a family of IFSM’s of
M. Then ¥;¢;4; = {(x, Hsic; Ay (x), VS A (%)) : x € M}, where,
Hsic; Ay (x) = V{Ngus(x):x; €M, i €], Xiejx; =x} VXEM,
and vy, 4, (x) =A{Viggva, (x):x; EM, i €], Xiejx; =x} VXEM,

where, in Y; ¢, x;, at most finitely many x; ‘s are not equal to zero. }; ¢; A; is called
the weak sum of the A;’s.

2.8. Definition ([6]). Let u be a fuzzy subset in M. Then n{v:u S v, v is fuzzy
submodule of M } is a fuzzy submodule of M, called the fuzzy submodule generated
by the fuzzy subset u and denoted by (u).

2.9. Definition ([10]). Two fuzzy subsets u,v inan R-module M are said to be
equivalent if (u) = (v) .

3 IFSM generated by an IFS
In this section we study about the IFSM generated by an IFS in an R-module M and
their properties. Also we prove some related results.

3.1. Theorem ([8]). Let A = (uy, v4) and B = (ug, vg) be IFSM’s of M , then
ANB = (Usnp: Vang) Isalso an IFSM of M .

3.2. Corollary.  Let A; = (uq,, va,) (i €/,1J]1> 1), be a family of IFSM’s of an
R-module M. Then N;¢;A; isan IFSM of M.

3.3. Theorem ([9]). Let A; = (ug,, va,) (i €J,1J1 > 1), be afamily of IFSM’s of
an R-module M. Then ;¢;4; isanIFSMof M.

3.4. Definition. Let A= (uy, v,) be an IFS in an R-module M. Then Nn{B : A € B,
B € IFSM (M)} is an IFSM of M, called the intuitionistic fuzzy submodule generated
by the IFS A, and is denoted by (A).

3.5. Definition. Let B = (ug, vg) be an IFSM of M such that B = (A4) for some
IFS A= (uyu, v,) inM . Then A iscalled a generating IFS of B.

Result:- Let A, B be IFS’s in M. Then the following can be verified.

AEIFSM (M) & (A)=A

ACB = (A)c (B)

(A/N) < (A)/N €IFSM (N) where N is a submodule of M, A/N and (A)/N are
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the restrictions of A and (A4) to N respectively.

3.6. Theorem. LetA; = (uq,, va,) (€], [J1 > 1), be afamily of IFSM’s of an R-
module M. Then <Ui€]Ai> = ZiE]Ai'

Proof. We have ;¢ 4; = ( By a; + VS a; ) 18 an IFSM of M (by theorem
3.3) , where
s a, (0) = V{Aigj g, (x):x; €M, i €], Xiejx; = x}
and vy, 4, (x) = A{Vigjva,(x):x; €M, i €], Xiejx; =x} VXEM
where, in ¥; ¢; x;, at most finitely many x; 's are not equal to zero.
Therefore pu,, (x) < My a; (x) and vy, (x) = Vsiga (X) VXEM, i€]
Hence A; €X;¢A; Vi€], thatis X;¢;A; isan IFSM that contains all A;’s.
Now to show that it is the smallest IFSM that contains all 4;'s , let B = (ug, vg) be
any IFSM of M which contains all 4;’s. Thatis A; € B V i € J, which means that
pa, (x) < pp(x)and vy, (x) = vp(x) VXEM, i€].
Let x € M where x =, ¢;x;, x; € M, then
s a, (€)= V{Ngpa, (x): x; €M, i €], Xiejx; = x}
SV{Aiggup (x;)): x; €M, i €], ¥jejx; = x}
<V{upQiejx;) " x;€ M, i €], Xiejx; =x}
= pp(x).

Similarly we can obtain Ve Ay (x) = vg(x) VxeM.

Therefore ¥, ¢;A; S B. Thus ¥; ¢; A; is the smallest IFSM which contains all 4; s,
hence Y ¢; A; is the smallest IFSM which contains U; ¢; 4; .

Therefore (U;e;4;) = XieyA;.  Hence the theorem.

3.7. Definition. Let C = (u¢, v¢) beanlIFSinaring Rand A = (u4, v4) be an
IFS inan R-module M. DefineC.A and C ® A as IFS’s in M as follows
1. C.A = (Uc 4, V¢ a) Where

te.a () =V{uc()Aps(y) : v €R, y € M, ry = x} and

Vea@) =A{ve(r)vv,(y):r€R, yEM, Ty =x} VXx€EM.
2. COA= (Ucoar Ve@a) Where
Ueoa(X)=V{AL, (uc(r) A us(x)) :1€R, x;, €M, 1<i<nmneN,

Siirix; = x}and
Veoa®)=A{VE (ve() V vy(x;)) i1 €ER, x; €M, 1<i<nne€N,
Z?zlrixi = X}VX € M.

3.8. Theorem. Let A= (uyu, v,) be an IFSin M, then
1. Forall reR, 1, .A=T1A
2. Forall reR, xeM, 1,,0A = W1y, 04 Viyy 04) Where
Hi, 0a(x) =V{AL pa(x) : v, EM,1<i<nnéeN, r3i—1x; = x}
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and Vi, 04(0) =A{VEE va(x) : x, EM1<i<nne€EN, r3_ix; = x}

Proof. For r € R, the IFP 1, = (414, Vi, ) in R is defined by

(1 ifs=r - _(0 ifs=r
gy () = {O otherwise 0 Vigy () {1 otherwise

Forany reR, 1py.A= (M2, 40 Vigy.4). Now forx € M,r € R we have
MT{T}.A (x) = V{MT{T}(S) AHA(}’) 'S € R! y € Ma Sy = x}
= V{u,(y) : r €R, y € M, ry = x} by the definition of m{r}(s)

= HUra (X)
Similarly we get vy, 4 (x) =vr4 (x) VX € M. Hence 1,y . A= rA V7 €R,
For anyr € R ,x e M
M1, oa(x)=v {AL, (NT{T}(Ti) Aug(x)) i1 €ER, x;, €M, 1<i<n,
ne€N,Z_irx; = x}

Clearly,  =V{A%, us(x;) : x, EM,1<i<nn€N, r3-,x; = x}
Similarly we get,

Vig, 0a) =A{VE vlx) s ;€M 1<i<nn€eN,r5_,x; = x}.

3.9. Definition. Let A = (uu, v,) be an IFS in a ring R. Then A is called an
intuitionistic fuzzy ideal (1FI) of R if it satisfies the conditions
L opalx—y) = pa(x) A pa(y)

vulx—y) < vi(x)vw(y) Vx,y €R and

2. pa(xy) = pa(x) vV pa(y)
va(xy) < vu(x) Avy(y) Vx,y €R. We denote the set of all IFI’s of R by
IFI (R).

3.10. Theorem. Let A = (uy, v4) be an IFl of R and B = (ug, vg) be an IFSM of
M. Then A® B € IFSM (M) .

Proof. By the definition we have
taos(0)=V {AL, (uaG)Aps (%) i1 €ER, x, EM,1<i<mne€N,
Zi_yrx; = 0}
=1 when r; = x;=0 Vi=1ton,since u,(0) > u,(r) vr eRr
Similarly we get v ,55(0)=0.
Now forany r € R, x € M,
Uaos(x) =V {A; (uat)Aug (%)) :1r€R, x; €M, 1<i<nneN,
Zioyrx; = rx}
>V AL (ualrs) Aug(z)) :s;€R, zzeM,1<i<nmneN,
r3i_18:7; = rx}
>V AL, (ua(s) Aug (z)) :s;€R, zzeM,1<i<nmneN,
Ji18;z; = x} ( In particular when r = 1 on
RHS, also since A = (4, v4) € IFI (R), pa(rs;) = pa(r) v pa(s;) = pa(sy))
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= Uaer(X).
Similarly we get v ,55(rx) <v, ep(x) VX €EM, r €R.
Now to show that u4op(x +y) = paes(*) A taes(y) VX,yEM, let x,y€
M we have
Uaos(x+y) =V {ANL, (wa(r)App (z)) i1 €ER, zz€M,1<i<nneN,
Jioirz; = x +y}
2V ANy (als) Aup O+ ) 15, €ER, x;, 7, EM, 1 <i<n,
neN, J_isi(x;+y;) =x+y}
> VAN (uals) A () Aps(v:))) 2 si €R, x;,y; € M,
1<i<nn€N,3si(x;+y) =x+y}
( since B = (ug, vg) € IFSM(M) )

= VAL ((uaGs) A pp(x)) AQua(s) Aps(y))) + s ER,
X, Vi EM,1<i<nmn€N, 3 ;s;(x; +y) =x+y}
>V{(AL, (a(s) A up(x)):s; ERX; EMI<i<nneNI_is;x;=x) A
(A?=1 (MA(Si) A MB(yi)):Si € Riyi € M,]. <i< nne Nizzllsiyi = y)}

= (V{AR, (uaGs) A pp(x)):s;i €Rx; EM,1<i<nmn€N, 3 sx; = x})

A (VAL (uaCs) A pp(v)):s; ERy; EM 1 <i<nneNIsy; =y}
= aes(X) Aaos(y) VX, yEM

Similarly we canget v 4o5(x +¥) <V 05(X) VV405() VX, yEM
Hence A® B isan IFSM of M.

Note: Let M =R. From above theorem if A, B € IFI (R), then A ©® B € IFI ( R).

3.11. Theorem. Let A = (uy, v4) be an IFS in M . Define B = (ug, vg), an IFSin M
asfollows: Vx e M pug(x) =1 if x=0,
pp(x) =V{AL, uu(x) : i €ERx; EM1<i<nmne€N S rx; =x}

otherwise.
And vg(x) =0 if x=0,
vp(x) =A{vh,vy(x):i€ERx;EM,1<i<nn€N,Z_rx; = x}

otherwise.
Thatis B= 1, U (1z ®4). Then (4) = B.

Proof. Clearly A € Bsince Vx € M, ,(x) < ug(x) and v,4(x) = vg(x).

By definition pg(0) =1 and vz (0) = 0.

Let r€R, x EM.

If rx =0then ug(rx) =1= ug(x) and vg(rx) =0 < vg(x).

Suppose rx # 0 then x # 0 and

up(rx) =V{AL; uu(x) i €ERx; EM1<i<nmn€N,Z_rx; =7rx}
>V{AL, ua(x) :s;ERx; EM, 1< i<nn€N,Z_rs;x; = X}
=V{AL, ua(x) s s; €ERx; €M, L<i<nne€N,r(3;s;x;) =rx}
>V, ua(x):s; ERXx;EM1I<i<nn€N, 3 s;x; =x}
(In particular whenr = 1)
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= up(x).

Similarly we can get vg(rx) < vg(x) V r €R, x € M.

Now let x,y € M. If x, y or x + y equal to zero then clearly

pp(x +y) = up(x) A pp(y) and vg(x +y) < vp(x) vvp(y).

Suppose x, y and x + y are all not equal to zero, then

pug(x+y) = Vv{AL, u (z) :r €R z;eM,1<i<nn€N,Z_ 1z, = x +y}

V{AN ua(z) i zi=x;+y;, x,y; €EM,s; € R,1<i<nmneN,

s +y) =x+y}

V(AL paed) A (N2 ua()) 2 si ER, x,y, EM, 1< i<n,

n €N, Z_isx; + o5y = x +y}

v

>V{(AL, ua(x) :s;€ERx; EM,1<i<nné€N,Z_is;x;=x) A
(A?=1 uA(yl) PS5 € Riyi € M,]. Sisnne Nizzllsiyi = y)}
=(V{AL ua(x) :s; ER X, EM1<i<nn€NZ_isx;=x}A
(V{A?=1MA(yi) PS5 € Riyi € M,]. Sisnne Nizzllsiyi = y})
= up(x) A pp(y)
Similarly we can obtain vz (x + y) < vg(x) vV vz (y) in this case.
Hence B = (ug, vp) isan IFSM of M which contains A. Now let C = (i, v¢) be
any IFSM of M which contains A. We will show that B € C. Since A € C, we have
Ua(x) < pc(x) and vy(x) =v-(x) Vv x € M. Now
us(x) =V{AL, pu(x) i €ERx; EM 1< i<nn€N,Z_rx; =x}
VAL uc(x) i €ERx; EM1<i<nmneN,Z_rx; =x}
pe(x). (since pc(x) = HC(Z?=1Tixi) = Ny pie (i) = A2 pe(x)
 pe(x) = VAL, pe(x), n € N})
Similarly we can obtain vgz(x) = v.(x) V x € M. Therefore B € C.
Thus we proved (A) = B.

I IA

4 Equivalent IFS’s inan R-module M
In this section we introduce Equivalent IFS’s in an R-module M and give a sufficient
condition for two IFS’s in an R-module M to be equivalent.

4.1. Definition. Two IFS’s A = (uy, v,) and B = (ug, vg) in an R-module M are
said to be equivalent if (A) = (B).

4.2. Theorem. Let A = (uu, v4), B = (ug, vg) be IFS’s in an R-module M and
forevery a,B € (0, 1] witha +f < 1,if A, pyand B, are equivalent subsets in
M, then A and B are equivalent.

Proof. Let A pyand B,y be equivalent subsets of M for every a,f € (0, 1]
with a +‘B < 1. Then (A(a”[g)> = (B(a“[g)> where A(a"[g) = {x EM HA(X) > «,
va(x) < B} and Bgp) ={x € M : up(x) = a,vg(x) < B} are subsets of M.
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We have (A p) = N{C : Axp) E C, C is submodule of M} and (B4 )) = N{D
: Ba,py € D, D is submodule of M}.
Now to show that (4) = (B), we have to show that =y 4 (x) = ppy(x) and
V(A)(X) = V(B)(X) VxeM.
We have from above theorem (A) = (u(ay, V(ay) Where pa(x) = 1 and v 4(x) =0
when x =0 and When x # 0,
tay() = VAL ua(x) iy ERx; €M 1<i<mnne NZ_nx; =x} and
Viay () =A{VE va(x) i ERx; €M1 <i<nmneN S rx; =x}
Similarly (B) =
( By, Vipy) Where ppy(x) =1 and vz, (x) =0whenx =0 and
Whenx #0, up(x)=v {/\j”;1 us(y;):s; €ERy,EM,1<j<mmEeN,

Yisy;=x} and v (x) = /\{Vj";1 vs(y;):s;€ER Yy, EM1<j<mmEe
N, 32185y = x} .
When x =0 clearly (A) =(B). Whenx # 0,taker; ER,x; e M,1 <i<nne€N,
Sioarix;=x. Weleta =A%, u, (x;) and B =V, vu(x;), thenclearly a + g < 1.
So that we get u,(x;) = aand vu(x;)) < p Vi=1lton,n€N.
That is x; € A pVi=1ton , n € Nwhich implies x; € (Aqp) Vi=1ton ,
neN.
Therefore 3i_;7;x; € (A(apy) for n € N, since (A, p)) is a submodule of M. Hence
x € (A(qp)). Nowsince (A p)) = (B(ap)) We get x € (B(qp)), SO that
there exists s; € R, y; € Bq5), 1 <j <m,m € N suchthat x = 3, s;y; .
Since y; € B(gpy, We get up(y;) = aandvg(y;) < B Vj=1tom,meN.
That is uB(yj) > /\l 1 Ua(x;) and VB(y]) <Vvi,v(x)Vj=1tom,meN.
This implies that AT, pg(y;) = A py () -=---- (1) and VI v (y;) S VR, va(xy)
------- (2) where Z:lzlrlxl Z]’ils]y] =x, meN,ne N.
From (1) we get,
ViR us(yj)is;€eRy;EMI<j<mmeN,SLsjy; =x} =

VAL ua(x) i €ERx; EM1<i<nne€ N, 3_rx; = x}

which implies  pgy(x) = pa(x) Vv x € M. Similarly from (2), we get
vipy(x) < vigy(x) V x €M. Therefore (A) € (B). In similar fashion we can
show that
(B) < (A). Hence (A) = (B).
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