Harmonic Mean Labeling on Double Triangular Snakes

¹C. Jayasekaran, ²S.S. Sandhya and ³C. David Raj

Department of Mathematics, Pioneer Kumaraswamy College, Nagercoil, Kanayakumari 629003, TamilNadu, India. Email: jaya_pkc@yahoo.com Department of Mathematics, Sree Ayyappa College for Women Chunkankadai; Kanyakumari-629807, India. Email: sssandhya2009@gmail.com Department of Mathematics, Malankara Catholic College, Mariagiri, Kanyakumari District. Email: davidrajmccm@gmail.com

Abstract

A graph G= (V,E) with p vertices and q edges is called a Harmonic mean graph if it is possible to label the vertices $x \in V$ with distinct labels f(x) from 1,2,...,q+1 in such a way that when each edge e=uv is labeled with $f(uv) = \left[\frac{2f(u)f(v)}{f(u)+f(v)}\right]$ (or) $\left\lfloor\frac{2f(u)f(v)}{f(u)+f(v)}\right\rfloor$, then the edge labels are distinct. In this case, f is called Harmonic mean labeling of G. In this paper we prove that Double Triangular snake and Alternate Double Triangular snake graphs are Harmonic graphs.

Keywords: Graph, Harmonic mean graph, Double Triangular snake, Alternative Double Triangular snake.

1.Introduction

All graph in this paper are finite, simple and undirected graph G=(V,E) with p vertices and q edges. For all detailed survey of graph labeling we refer to Gallian [1]. For all other standard terminology and notations we follow Harry [2]. We will provide brief summary of definitions and other information which are prerequisites for the present investigation.

Definition 1.1: A graph G = (V,E) with p vertices and q edges is called a Harmonic

mean graph if it is possible to label vertices $x \in V$ with distinct labels f(x) 1, 2, ..., q+1 in such a way that when each edge e=uv is labeled with $f(uv) = \left[\frac{2f(u)f(v)}{f(u)+f(v)}\right]$ (or) $\left[\frac{2f(u)f(v)}{f(u)+f(v)}\right]$, then the edge labels are distinct. In this case f is called Harmonic mean labeling of G.

Definition 1.2: Triangular snake Tn, is obtained from a path $u_1u_2...,u_n$ by joining u_i and u_{i+1} to new vertex v_i .

Definition 1.3: An Alternate Triangular snake $A(T_n)$ is obtained from a path $u_1u_2...u_n$ by joining u_i and u_{i+1} (alternatively) to new vertex v_i .

Definition 1.4: A Double triangular snake $D(T_n)$ is the graph obtained from the path $u_1u_2....u_n$ by joining u_i, u_{i+1} with two new vertices v_i and w_i , $1 \le i \le n-1$.

Definition 1.5: Alternate Double triangular snake $A(DT_n)$ is the graph obtained from the path $u_1u_2....u_n$ by joining u_i, u_{i+1} (Alternatively) with two new vertices v_i and w_i $1 \le i \le n-1$.

S. Somasundaram and S.S.Sandhya introduced Harmonic mean labeling of a Graph in [4] and studied their behaviour in [5] and [6]. In this paper we prove that Double Triangular snakes and Alternate Double Triangular snakes are Harmonic mean graphs.

2. Main Results

Theorem 2.1: A Double Triangular snake $D(T_n)$ is a harmonic mean graph.

Proof, Consider a path $u_1u_2....u_n$. Join u_i , u_{i+1} with two new vertices v_i , $w_i \ 1 \le i \le n-1$. Define a function f: $V(D(T_n)) \rightarrow \{1, 2, ..., q+1\}$ by $f(u_1)=3$; $f(u_i)=5i-4$, $2 \le i \le n$; $f(v_1)=1$; $f(v_i)=5i-3$, $2 \le i \le n-1$; $f(w_i) = 5i-1$, $1 \le i \le n-1$;

The edges are labeled with $f(u_1u_2) =4$; $f(u_iu_{i+1})=5i-2$, $2 \le i \le n-1$; $f(u_iv_i)=5i-4$, $1 \le i \le n-1$; $f(u_2u_1) =2$; $f(u_{i+1}v_i)=5i-1$, $2 \le i \le n-1$; $f(u_1w_1)=3$; $f(u_iw_i)=5i-3$, $2 \le i \le n-1$; $f(u_{i+1}w_i)=5i$, $1 \le i \le n-1$;

Harmonic Mean Labeling on Double Triangular Snakes

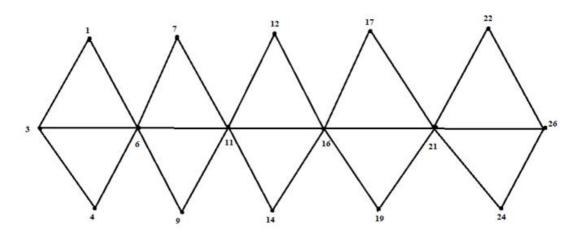


Figure : 1

In the view of the above labeling, f provides Harmonic mean labeling for the graph $D(T_n)$.

Theorem 2.2: Alternative Double Triangular snake $A(D(T_n))$ is a Harmonic mean graph.

Proof: Let G be the graph $A(D(T_n))$. consider the path $u_1u_2....u_n$. To construct G, join u_i , u_{i+1} (alternatively) with two new vertices v_iw_i , $1 \le i \le n-1$. There are two different cases to be considered.

Case 1: If the Double Triangle starts from u_1 we need to considered two subcases.

Subcase1(a): If n is odd, then Define a function f:V(G)→{1,2.....q+1} by $f(v_1)=1; f(v_i) = 6(i-1), 2 \le i \le \frac{n-1}{2};$ $f(u_i) = 3; f(u_i) = 3i-1, 2 \le i \le n-1; f(u_n)=3(n-1);$ $f(w_i) = 6i-2, 1 \le i \le \frac{n-1}{2};$

The edges are labeled with $f(u_iu_{i+1}) = 3i+1$ for all i = 1,3...,n-2; $f(u_iu_{i+1}) = 3i$ for all i = 1,3...,n-3; $f(u_{2i-1}v) = 6i-5$ for all $i=1,2...,\frac{n-1}{2}$; $f(u_{2i}v_i) = 6i-4$ for all $i = 1,2...,\frac{n-1}{2}$; $f(u_{2i-1}w_i) = 6i-3$ for all $i=1,2...,\frac{n-1}{2}$; $f(u_{2i}w_i) = 6i-1$ for all $i=1,2...,\frac{n-1}{2}$; 253

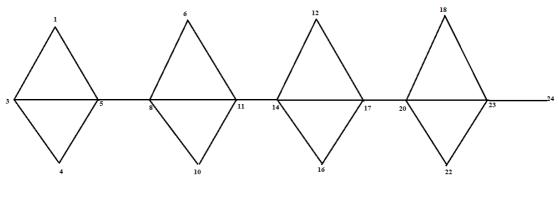
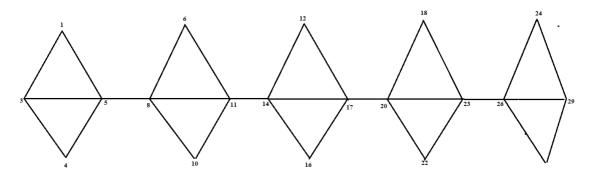


Figure : 2

In this case f is a harmonic mean labeling.

Subcase (1) (b) : If n is even then Define a function f: V(G) \rightarrow {1,2....,q+1} by $f(v_1) = 1; f(v_i) = 6i-1, 2 \le i \le \frac{n}{2};$ $f(u_1) = 3; f(u_i) = 3i-1, 1 \le i \le \frac{n}{2};$

The edges are labeled with $f(u_iu_{i+1}) = 3i-1$ for all i = 1,3,...,n-1; $f(u_iu_{i+1}) = 3i$ for all i = 2,4,...,n-2; $f(2_{i-1}v_i) = 6i-5$, for all $I = 1,2,...,\frac{n}{2}$; $f(u_{2i}v_i) = 6i-4$, for all $i=1,2,...,\frac{n}{2}$; $f(u_{2i-1}w_i)=6i-3$, for all $i=1,2,...,\frac{n}{2}$; $f(w_iw_i) = 6i-1$, for all $i=1,2,...,\frac{n}{2}$;



In this case f is Harmonic mean labeling

Case 2(a): If the triangle starts from u_2 , we have to consider two sub cases.

Subcase 2(a): If n is odd then. Define a function f: V(G) →{1,2,...,q+1} by $f(u_iu_{i+1}) = 3i-2$ for all i=1,3,...,n-2; $f(u_iu_{i+1}) = 3i-1$ for all i=2,4,...,n-1; $f(u_{2i}v_i) = 6i-4$ to for all i=1,2,..., $\frac{n-1}{2}$; $f(u_{2i+1}w_i) = 6i$ for all i=1,2,..., $\frac{n-1}{2}$; $f(u_{2i+1}w_i) = 6i$ for all i=1,2,..., $\frac{n-1}{2}$;

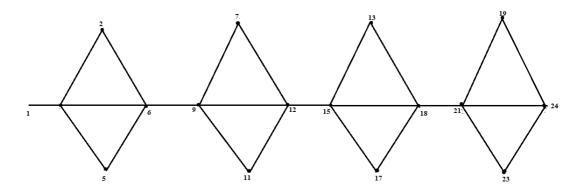


Figure: 4

In this case f provides Harmonic mean labeling of G.

Subcase 2(b): If n is even

Define a function f:V(G) \rightarrow {1,2...q+1} by f(u₁)=1; f(u₂)=4; f(u_i)=3(i-1), 3 \le i \le n-1; f(u_n) = 3n-5; f(v₁) = 2; f(v_i)=6i-5, 2 \le i \le \frac{n-2}{2}; f(w_i) = 6i-1, 2 \le i \le \frac{n-2}{2};

Then the edges are labeled with $f(u_iu_{i+1}) = 3i-2$ for all i=1,3...,n-1; $f(u_iu_{i+1}) = 3i-1$ for all i = 2,4...,n-2; $f(u_{2i}v_i) = 6i-4$ for all $i = 1,2...,\frac{n-2}{2}$; $f(u_{2i+1}v_i) = 6i-3$ for all $i = 1,2...,\frac{n-2}{2}$; $f(u_{2i}w_i) = 6i-2$ for all $i=1,2...,\frac{n-2}{2}$; $f(u_{2i+1}w_i) = 6i$ for all $i=1,2...,\frac{n-2}{2}$

In this case, f provides Harmonic mean labeling of G.

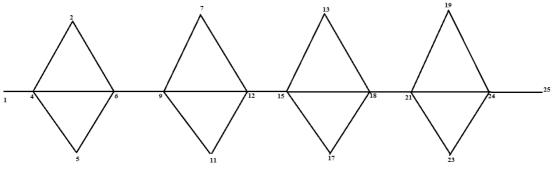


Figure: 5

From all the above cases, we conclude that Alternate Double Triangular Snake $A(D(T_n))$ is a Harmonic mean graph.

References

- [1] J.A.Gallian, 2010, A dynamic survey of graph labeling. The electronic Journal of Combinatories 17#DS6.
- [2] Harry F, 1988, Graph Theory, Narosa publishing House Reading, New Delhi.
- [3] Somasundaram., S., and Ponraj R., 2003, Mean labeling of graphs, National Academy of Science Letters Vol.26, p.210-213.
- [4] Somsundaram S., and Ponraj R., and Sandhya S.S., Harmonic mean labeling of Graphs Communicated.
- [5] Sandhya S.S., Somasundaram S., and Ponraj R., Some Results on Harmonic Mean Graphs, International journal of Contemporary Mathematical Sciences 7(4) (2012), 97-208.
- [6] Sandhya S.S., Somasundaram S., and Ponraj R., Harmonic Mean labeling of Some Cycle Related Graphs, International Journal of Mathematical Analysis Vol.6 No.40, (2012) 1997-2005.