\mathcal{U} Compactness and G_{δ} -Continuity

P. Jha¹, B.P. Tripathi² and Manisha Shrivastava³

¹Govt . J. Y . Chhattisgarh College , Raipur (C.G.) India ²Govt. Nagarjun Science College , Raipur(C.G.) India ³B. R .S. M . College of Agricultural Engineering and Technology, Raipur (C.G.) India ³Email: shrivastavamanisha9@gmail.com

Abstract

Velleman proved that a mapping from R to R is continuous if and only if the images of compact sets are compact sets . Arenas and Puertas generalized this characterization of cont--inuity between two topological spaces . G. Nordo and Pasinkov generalized the Arenas and Puertas result to some different classes of spaces, by generalizing the definition of set of mappings characterized by images of sets . In the present paper , we prove results based on G_{δ} -continuity and \mathcal{U} compact spaces. We prove that the \mathcal{U} compactness of the space is preserved under $G\delta$ -continuous mapping and also prove that G_{δ} -continuous image of product of two \mathcal{U} compact spaces , is again \mathcal{U} compact.

Keywords : \mathcal{U} compact spaces , G_{δ} -continuity.

Mathematics Subject Classification Code (2010):54C05, 54C99 ,54D30, 54D99

Introduction

The problem to characterize the continuity by images of sets was studied first [3] by Vellman that have shown that the set C(R,R) of all real continuous function on R can not characterized by images of sets. Arenas and Puertas have generalized Velleman's result by concerning C(R,R) and have proved the following:

Theorem (AP) : Let X be a locally connected first countable space and let y be a regular normal space . Then $C(X,Y) = C_{A,A} \cap C_{B,B}$ where A is the family of all connected sets and B is the family of compact sets. Nordo and Pasinkov generalized Theorem AP to some different classes of spaces like continuity on q-spaces , continuity on sequential spaces and they prove the theorem :

Let $f: X \rightarrow Y$ be a G δ -continuous mapping from a locally connected regular q-space

X to normal space Y . If f maps countable compact sets in countable compact sets and connected sets in connected sets then it is continuous.

G_{δ} -Continuity :

Definition 1.1 : A mapping f: X \rightarrow Y between spaces X and Y is said to be G_{δ} continuous at a

point $x \in X$, if for every neighborhood V of fx, there exists a G_{δ} -set G in X such that $x \in G$ and $fG \subset V$.

A mapping is called G_{δ} -continuous if it is G_{δ} -continuous at any point of the domain. The set of all G_{δ} -continuous mappings from a space X to a space Y will be denoted by $C_{\delta}(X,Y)$. Obviously $C(X,Y) \subset C_{\delta}$ (X,Y) (where C(X,Y) consists of all continuous mappings from X to Y).

There has been much work on different types of compactness and continuity in general topology. But up till now no one has worked on \mathcal{U} compactness with G_{δ} -continuity. In the present paper we prove various results on \mathcal{U} compactness and G_{δ} -continuity.

U-compactness : [1]

Definition 1.2 : Let $\mathcal{U}=\{\mathcal{A}\}$ be any collection of open coverings of a topological space X, containing all finite open coverings as subsystem. The topological space X is \mathcal{U}

compact, if each open cover of X has a refinement $A \subset U$.

In the section 2, we prove that , 'a mapping f: $X \rightarrow Y$ is G_{δ} -continuous if and only if the image of a U-compact space X is , U-compact .

In the section 3, we prove that the product of two \mathcal{U} compact spaces is again \mathcal{U} compact. We also prove that the projection mappings $\pi 1 : X \times Y \rightarrow X$ or $\pi 2 : X \times Y \rightarrow Y$ is G_{δ} -continuous and also prove that the G_{δ} -continuous image of product of two \mathcal{U} compact spaces is again \mathcal{U} compact.

New Characterization of *U*-compactness

Theorem 2.1: Let $f: X \rightarrow Y$ be a mapping from X to Y then prove that the mapping f is G_{δ} - continuous if and only if the image of a \mathscr{L} compact space X is again \mathscr{L} compact.

Proof : Let f: $X \rightarrow Y$ be a mapping between two spaces X and Y and suppose the space X is U-compact.

Claim : space Y is U compact .

Let $\mathcal{U}^*=\{ \forall \alpha \}_{\alpha \in \Lambda}$ be the collection of open coverings of Y , containing all the finite open coverings of Y as subsystem , where each $V_{\alpha} \in \mathcal{U}^*$ is the open neighborhood of

some point $f(x_{\alpha})$, for all $\alpha \in \Lambda$, $x_{\alpha} \in X$. Those open coverings of space Y, which are not in \mathcal{J}^* , like V_{β} ,

for all $\beta \in \Lambda_1$ are also the neighborhood of some point $f(x_\beta)$, for all $\beta \in \Lambda_1, x_\beta \in X$ Let $\mathcal{U} \in \{f^1(V_\alpha)\}$ be the collection of coverings of space X where each $f^1(V_\alpha)$, $\alpha \in \Lambda$ be the open set. Each open covering $f^1(V_\alpha)$, for all α , is also the neighborhood of some point x_α in X. Since the mapping f is G_δ -continuous, so corresponding to neighborhood V_α of $f(x_\alpha)$, for all $\alpha \in \Lambda$, in Y we can have G_{δ} -set G_α in X and corresponding to the neighborhood V_β of $f(x_\beta)$, for all $\beta \in \Lambda_1$, we can have $G\delta$ -set G_β in X. Since X is \mathcal{U} compact space, so each covering of X, should have a refinement in \mathcal{U} . Therefore each open covering $f^1(V_\alpha)$, for all α , can have a refinement $G\alpha$, for all α in \mathcal{U} , as well as those open coverings $f^1(V_\beta)$, for all β , not belongs to \mathcal{U} , also have refinement G_β , for all β in .

Again by using the definition of G_{δ} -continuity ,we can have $x_{\alpha} \in G_{\alpha}$, for all α , such that $f(G_{\alpha}) \subset V_{\alpha}$, for all $\alpha \in \Lambda^{\cdot}$, in \mathcal{U}^{*} . Here $f(G_{\alpha})$ and $f(G_{\beta})$ have been taken as refinements of open coverings of Y as subsystem. Let $\{V_{\beta}\}$, for all $\beta \in \Lambda_{1}$, not belongs to \mathcal{U}^{*} are also the open coverings of Y. Now open coverings V_{α} , for all $\alpha \in \Lambda$ be the neighborhood of some point $f(x_{\alpha})$, and V_{β} are also the neighborhood of some point $f(x_{\alpha})$, for all $\beta \in \Lambda_{1}$. Now let $\mathcal{U}=\{f^{-1}(V_{\alpha})\}_{\alpha \in p}$ (arbitrary set p) be the collection of the open coverings of X, containing all the finite coverings as subsystem. Let f ${}^{1}(V_{\beta})$, for all $\beta \in p_{1}$, are also the open coverings of X not belongs to \mathcal{U} .

```
Here we also assume that f^{1}(V_{\alpha}), for all \alpha, are the neighborhood of the points
```

 $x_{\alpha} \in X$ and $f^{-1}(V_{\beta})$, for all $\beta \in p_1$, are the neighborhood of the points x_{β} , in X. So every x_{α} , for all α and x_{β} , for all β are the interior points of $f^{-1}(V_{\alpha})$ and $f^{-1}(V_{\beta})$ respectively. So we can assume open sets $G\alpha$, for every α , G_{β} , for every β (as $G\delta$ sets in X) such that $x_{\alpha} \in G\alpha \subset f^{-1}(V_{\alpha})$, for all α and $x_{\beta} \in G_{\beta} \subset f^{-1}(V_{\beta})$, for all β (Since the collection of open sets all $G\alpha$'s and all G_{β} 's have been taken as refinements of open coverings $f^{-1}(V_{\alpha})$ and $f^{-1}(V_{\beta})$ respectively of X, in U) in U. This implies that $fx_{\alpha} \in$ $f(G\alpha) \subset V_{\alpha}$, for every α and $fx_{\beta} \in f(G_{\beta}) \subset V_{\beta}$, for every β (Here $f(G\alpha)$ and $f(G_{\beta})$ are the refinements of the open coverings V_{α} and V_{β} respectively of X) in U^{*} , as space Y is U-compact.

It shows that mapping f: $X \rightarrow Y$ is G_{δ} -continuous.

Productivity of *U***Compactness**

Theorem 3.1 : The product of two *U*-compact spaces is again *U*-compact.

Proof : Step 1: Suppose we have given two spaces X and Y (both X and Y are compact), with Y is U_2 -compact.

Let x_0 be any point of X, and N is any open set in $X{\times}Y$, containing the slice $x_0{\times}\;Y$ of $X{\times}Y$. For the product of two compact spaces , if Y is compact , then we know that by the Tube

Lemma, N contains some tube $w \times Y$ about $x_0 \times Y$, w is the neighborhood of x_0 in X. Since Y is the U_2 -compact, let $U_2 = \{\mathcal{A}_{\alpha}\}_{\alpha \in \Lambda}$ be the collection of open sets of Y, containing all the finite coverings of Y, as subsystem. Since Y is U_2 -compact, so each open covering of Y will have a refinement B_{α} in U_2 . Let $U^* \times U_2 = \{W \times \mathcal{A}_{\alpha}\}$ be the collection of open coverings of $x_0 \times Y$. Since $x_0 \times Y$ is compact, so is $U^* \times U_2$ compact, therefore each open covering of $x_0 \times Y$ will have a refinement $W_{x0} \times \mathcal{B}_{\alpha}$ in $U^* \times U_2$ (where $W_{x0} \subset W$ is again a neighborhood of x_0 .)

Step 2 :- Let us assume that the space X and Y are \mathcal{U}_1 -compact and \mathcal{U}_2 -compact respectively.

Let $U_1 \times U_2 = \{a_\alpha \times b_\alpha\}$ be the set of open covering all the finite coverings of $X \times Y$, containing all the finite coverings of $X \times Y$ as subsystem. Since $x_0 \times Y$ is $U^* \times U_2^*$ -compact so

it can be covered by many elements of $U_1 \times U_2$ and the union $a_{\alpha_1} \times b_{\alpha_1} \cup a_{\alpha_2} \times b_{\alpha_2} \cup a_{\alpha_3} \times b_{\alpha_3} \cup b_{\alpha_3} \cup$

 $\begin{array}{l} \mbox{Ua}_{\alpha m}\times \ b_{\alpha m} = N \ , \ which \ is \ an \ open \ set \ containing \ x_0 \times Y \ , \ so \ by \ the \ Tube \\ \mbox{Lemma the open set } N \ contains \ a \ tube \ {\mathscr W}\times Y \ about \ x_0 \times Y \ and \ {\mathscr W}\times Y \ also \ covered \ by \\ \ many \ elements \ of \ \ {\mathcal U}_1 \times \ {\mathcal U}_2 \ (\ {\mathscr W} \ s \ an \ open \ set \ in \ X) \ . \ Since \ {\mathscr W}\times Y \ is \ {\mathcal U}_1 \times \ {\mathcal U}_2 \ -compact \ , \ so \\ \ each \ open \ covering \ of \ \ {\mathscr W}\times Y \ will \ have \ a \ refinement \ in \ \ {\mathcal U}_1 \times \ {\mathcal U}_2 \ . \end{array}$

Thus for each x in X, we can choose a neighborhood \mathscr{U}_x of x, such that the tube $\mathscr{U}_x \times Y$ can be covered by finitely many elements of $\mathscr{U}_1 \times \mathscr{U}_2$. The collection of all such neighborhoods \mathscr{U}_x is an open covering of X. Since X is \mathscr{U}_1 -compact, so each open covering of X will have a refinement in $\mathscr{U}_x \subset \mathscr{U}_x$ for every x, in \mathscr{U}_1 and the union of the tubes $\mathscr{U}_1 \times Y$, $\mathscr{U}_2 \times Y$, $\mathscr{U}_3 \times Y$ $\mathscr{U}_m \times Y$, is the whole X $\times Y$. Therefore each open covering of X \times Y will have a refinement in $\mathscr{U}_1 \times \mathscr{U}_2 = \mathscr{U}$. Therefore X \times Y is \mathscr{U} compact.

Lemma: Prove that the projection mapping $\pi_1 : X \times Y \rightarrow X$ or $\pi_2 : X \times Y \rightarrow Y$ is $G\delta$ -continuous.

Proof : Let V_{α} be a neighborhood of any point $\pi_1(x_0, y_0)$. Let $G_1 \times Y$ be a $G\delta$ -set

(Since $G_1\times Y\,$ is an open set in $X\times Y$) in $X\times Y$, containing (x_0,y_0) i.e. $(x_0,y_0)\in G_1\times Y$.

So $\pi_1(x_0, y_0) \in \pi_1(G_1 \times Y)$. Since V_{α} be the neighborhood of the point $\pi_1(x_0, y_0)$.

Therefore $\pi_1(x_0, y_0) \in \pi_1(G_1 \times Y) \subset V_{\alpha}$, for all (x_0, y_0) . This shows that the mapping $\pi_1 : X \times Y \rightarrow X$ is G δ -continuous.

Theorem 3.2 : If the product of two \mathcal{U} compact spaces X and Y is \mathcal{U} compact and the mapping $\pi_1 : X \times Y \rightarrow X$ is G δ -continuous, then the π_1 image of product of two \mathcal{U} compact spaces is again \mathcal{U} compact.

Proof: Let V_{α} be the neighborhood of any point $\pi_1(x_0, y_0)$ in X. Let $U_1 = \{V_{\alpha}\}_{\alpha \in \Lambda}$ be the collection of open coverings of X, containing all the finite open coverings as subsystem.

Let $\mathcal{U}_1 \times \mathcal{U}_2 = \{ V_{\alpha} \times Y \}_{\alpha \in \Lambda}$ be the set of open coverings of $X \times Y$, containing all the finite open coverings as subsystem. Let $G_1 \times G_2$ be any open set ($G\delta$ -set, being an open set) containing the point (x_0, y_0) in $V_{\alpha} \times Y$, where G_1 is $G\delta$ -set in V_{α} i.e. in X and G_2 is the $G\delta$ -set in Y.

Since $X\times Y$ is ${\mathcal U}compact$, so every open cover $V_{\alpha}\!\!\times Y$ of $X\times Y$, containing refinement suppose

 $G_1 \times G_2$ in $\mathcal{U}_1 \times \mathcal{U}_2$. Since $(x_0, y_0) \in G_1 \times G_2$. This implies that $\pi_1 (x_0, y_0) \subset \pi_1 (G_1 \times G_2)$.

Since the mapping is $G\delta$ -continuous, so $\pi_1 (G_1 \times G_2) \subset V_{\alpha}$, for all α . If $\pi_1 (G_1 \times G_2)$

can be taken as refinements of open covering V_{α} , for all α , of X. Thus we can say that every open cover V_{α} of X having a refinement in \mathcal{U}_{\perp} .

Thus the space X is $U_1 = U$ compact.

References

- [1] Velleman, D. J., 1997, "Characterizing Continuity", American Math. Monthly . 104 (4), 318-322.
- [2] Nordo, G. and Pasynkov, B. A., "Characterizing Continuity in Topological Spaces ", monograph 1-6. Giorgio Nordo Department di matematica di Messina, Contrada Papardo Salita sperone 31 98166 sant' Agata Massina (ITALY) E-mail : nordo©dipmat.unime. it Boris A. Pasinkov Chair of General Topology and Geometry, Mechanics and Mathematics Faculty, Moscow State University,Moscow 119899 (RUSSIA) E-mail: pasinkov©mech.math.msu.su.6
- [3] Munkers , J. R . , 1992 , "Topology A First Course" , Prentice-Hall of India , Private Limited , .
- [4] Arya, S.P., and Jha, P., 1993, " *U*Fuzzy Compactness and Fuzzy Supercompactness", The Journal of Fuzzy Mathematics, 1(2), Los Angeles.

P. Jha et al

188