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Abstract

We obtain infinitey many non-zero integer quadruples (x,y,z,w) satisfying the
biquadratic equation with four unknowns 8(x* + y*) = (1+ 3k ?)z*w.. Various
interesting relations between the solutions and special numbers, namely,

polygonal numbers, pyramidal numbers, Jacobsthal numbers, Jacobsthal-
Lucas numbers are obtained.

Keywords: bi-quadratic equation with four unknowns,integral solution,
special numbers.

MSC Subject Classification: 11D25
Notations
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Introduction

The biquadratic diophntine(homogeneous or non-homogeneous) equation offer an
unlimited field for research due to their variety[1-3]. In particular, one may refer [4-
15] for ternary non-honogenous biquadratic equations. This communication concerns
with yet another interesting ternary non-homogenous biquadratic equation given by
8(x*+y®)=@1+3k?*)z*w. A few interesting relations between special polygonal

numbers, pyramidal numbers and special number patterns are exhibited.

Method of Analysis
The non-homogeneous biquadratic Diophantine equation with four unknowns to be
solved for getting non-zero integral solutions is

8(x*+y®)=(1+3k?)z’w (1)
To start with, the substitution of the linear transformations
X=U+V,y=u-Vv,w=16u 2)
in (1), leads to

u? +3v2 = (1+3k%)"z3 3)

The above equation (3) is solved through three different patterns and thus, one can
obtain three distinct sets of solutions to (1).

Pattern 1
Let z=a’+3b° 4)
Taking n=0 in (3), we have
u? +3v? =23 (5)

whose solution is given by
Ug = a% —9ab?

Vo =3a%b—3p>
Again taking n=1 in (3), we have

u2+3v2:(1+3k2)z3 (6)
whose solution is represented by

U =Ug —3kVO

Vi =kug +Vvg

The general form of integral solutions to (3) is given by

Us A 3B Uo
by B

N } ,5=1,2,3,...

Vs Vo

where
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L+ iky3) + (- ikv3)
2
o _[1+ik3) —f-ikV3)
) 2
Thus in view of (2), the following quadruple (XsY sz,ws) of integers based on
(Xo,yo,Zo,Wo) also satisfy (1)

e (2,) = (Ug + Vg )Aq + ifs(vo _“?0]55

A, =

ys(a,b)=(ug +vg)As + i\/§(v0+u?0] Bs

2 2
2(a,b)=a“ +3 wq (a,b) =16(ug A +i+/3vgBs)
The above values of XsYys,Ws satisfy the following recurrence relations
respectively.

X412 — 2Xg41 +(3k2 +1Dxs =0
Vs —2Yss1 + (3k% +1)ys =0

Wg,o —2Wgyq +(3k2 +1Dwg =0

Properties
1) a[x.(al)+y,(a1)]=8A (6PT, , —3P%. —2t,, )+36i/3B,

2) 3alx.(a1)-y,(al)]=108P% A, —2iV3B, (24PT, , ~12P% . -8, )

3) 6xs(al)=3A (4P5a +35, 14ty —9)— 2iv/3Bq (6P3a_1 —9PR, + 23,5 ~ts4 +9)
4) w, (2% +1) = 2“(As (33, —9j,, +10)+3+3iB,(j,, - 2))

5) W, (a+11)=16(A (6P% +2t,, — 2Gno, —10)+ 3iB, (3PR, +5t, , - 2t,.))

Pattern 2
Substituting (4) in (3) and using the method of factorization, define

(u+ivav)=+iky3) (a+iva)
Expanding binomially and equating real and imaginary parts, we have
u=f(k)a®-9ab?)-9g(k)a%-b>)

v=g(k)a® -9ab?) +3f(k)a’b-bd)
where
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2
(-1) nCyr k23" (7)
r=0

NS

fk)=

g

(—1)r"1n02r_1k 2r—13r—1

>
M| 2

glk)=
r=1

In view of (2) and (7) the corresponding integer solution (x,y,z,w) to (1) is
obtained as

x = (f(k)+g(k))(a® -9ab?) + (3 (k)-9g(k)}ab —b*)

y =(f(k)+g(k)(a> —9ab®) - (3f (k)-9g(k))a*b—b*)

z=a’ +3b?

w=16[f (k)(a® —9ab?) - 9g(k)(a’b—b3)]

Pattern 3
Substituting (4) in (3) and using the method of factorization, define

U+iv3v = [L+iky3) (a+iv3b)

=r" exp(in@)(a+ i\/§b)3

where r =3k? +1, 6 =tan"k+/3 (8)
Equating real and imaginary parts in (8), we get

u=r" ((a3 —9ab2)cos no — (3a2b - 3b3)\/§sin ne)

V= r”((a3 —9ab2)3in no ~(3a% —3b3)cosn9]

V3

In view of (2) and (4), the corresponding values of x,y,z and w are represented by
n( (3 2 .2 3 3 2 a2 3)|sinn6
x(a,b)=r ((a —9ab“ +3a“b—3b )cosn9+(a —9ab“ —9a“h +9b )T]

w

y(a,b)= rn((a3 —9ab? -3a%h +3b3)cosn9 + (— a® +9ab2 —9a’b +9b3)3m 9]

>

&

z(a,b)=a? + 3p?
w(a,b)=r" ((a3 - 9ab2)cos ng — (3a2b - 3b3)\/§sin ne)

Properties

n .
1) x(aa)= 4(1+3k2)2(5'” no . cosn@j(SOa + 2ty 0ty o)

V3
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2) 8x(a,b)+8y(a,b)-w(a,b)=0
3) 3(2(2” ,1)— jZn) is a nasty number.
4) 2(2(2” ,1)— 3J Zn) is a cubical integer.

Conclusion
One may search for other patterns of solutions and their corresponding properties.
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