Observations on the Non-homogeneous Quintic Equation with Four Unknowns

S. Vidhyalakshmi¹, K. Lakshmi² and M.A. Gopalan³

Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620002, India E-mail: ¹vidhyasigc@gmail.com, ²lakshmi16654@gmail.com, ³mayilgopalan@gmail.com

Abstract

We obtain infinitely many non-zero integer quadruples (x, y, z, w) satisfying the quintic equation with four unknowns. $xy + 6z^2 = (k^2 + 5)^n w^5$. Various interesting relations between the solutions and special numbers, namely, polygonal numbers, pyramidal numbers, Jacobsthal numbers, Jacobsthal-Lucas number, keynea numbers, Four Dimensional Figurative numbers and Five Dimensional Figurative numbers are exhibited.

Keywords: Quintic equation with four unknowns, integral solutions, 2-dimentional, 3-dimentional, 4-dimentional and 5-dimensional Figurative numbers.

MSC 2000 Mathematics subject classification: 11D41.

Notations

$$T_{m,n} = n \left(1 + \frac{(n-1)(m-2)}{2} \right)$$
 -Polygonal number of rank n with size m

$$P_n^m = \frac{1}{6} (n(n+1)((m-2)n+5-m) - \text{Pyramidal number of rank } n \text{ with size } m$$

$$SO_n = n(2n^2 - 1)$$
-Stella octangular number of rank n
 $S_n = 6n(n-1) + 1$ -Star number of rank n

 $PR_n = n(n+1)$ -Pronic number of rank n

$$J_n = \frac{1}{3} (2^n - (-1)^n)$$
-Jacobsthal number of rank n

 $j_n = 2^n + (-1)^n$ -Jacobsthal-Lucas number of rank n

 $KY_n = (2^n + 1)^2 - 2$ -keynea number.

$$F_{5,n,3} = \frac{n(n+1)(n+2)(n+3)(n+4)}{5!}$$
 = Five Dimensional Figurative

number of rank n

whose generating polygon is a triangle.

$$F_{4,n,3} = \frac{n(n+1)(n+2)(n+3)}{4!}$$
 = Four Dimensional Figurative number of

rank n

whose generating polygon is a triangle

Introduction

The theory of diophantine equations offers a rich variety of fascinating problems. In particular, quintic equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians since antiquity[1-3]. For illustration, one may refer [4-10] for quintic equations with three, four and five unknowns. This paper concerns with the problem of determining non-trivial integral solutions of the non-homogeneous quintic equation with four unknowns given by $xy + 6z^2 = (k^2 + 5)^n w^5$. A few relations between the solutions and the special numbers are presented.

Method of Analysis

The Diophantine equation representing the quintic equation with four unknowns under consideration is

$$xy + 6z^2 = (k^2 + 5)^n w^5$$
 (1)

Introduction of the transformations

$$x = u + v, y = u - v, z = v$$
 (2)

in (1) leads to

$$u^2 + 5v^2 = (k^2 + 5)^n w^5$$
(3)

The above equation (3) is solved through three different approaches and thus, one obtains three distinct sets of solutions to (1)

Approach 1:

Let
$$w = a^2 + 5b^2$$
 (4)

Substituting (4) in (3) and using the method of factorisation, define

$$(u+i\sqrt{5}v) = (k+i\sqrt{5})^n (a+i\sqrt{5}b)^5$$

$$=r^n \exp(in\theta)(a+i\sqrt{5}b)^5$$

where
$$r = \sqrt{k^2 + 5}, \theta = \tan^{-1} \frac{\sqrt{5}}{k}$$
 (5)

Equating real and imaginary parts in (5) we get

$$u = r^{n} [\cos n\theta (a^{5} - 50a^{3}b^{2} + 125ab^{4}) - \sqrt{5} \sin n\theta (5a^{4}b - 50a^{2}b^{3} + 25b^{5})]$$

$$v = r^{n} [\cos n\theta (5a^{4}b - 50a^{2}b^{3} + 25b^{5})] + \frac{\sin n\theta}{\sqrt{5}} (a^{5} - 50a^{3}b^{2} + 125ab^{4})]$$

In view of (2) and (4), the corresponding values of x, y, z and w are represented by

$$x = r^{n} [\cos n\theta (a^{5} - 50a^{3}b^{2} + 125ab^{4} + 5a^{4}b - 50a^{2}b^{3} + 25b^{5}) + \frac{\sin n\theta}{\sqrt{5}} (a^{5} - 50a^{3}b^{2} + 125ab^{4} - 5(5a^{4}b - 50a^{2}b^{3} + 25b^{5})]$$

$$y = r^{n} [\cos n\theta (a^{5} - 50a^{3}b^{2} + 125ab^{4} - 5a^{4}b + 50a^{2}b^{3} - 25b^{5}) - \frac{\sin n\theta}{\sqrt{5}} (a^{5} - 50a^{3}b^{2} + 125ab^{4} + 5(5a^{4}b - 50a^{2}b^{3} + 25b^{5})]$$

$$z = r^{n} [\cos n\theta (5a^{4}b - 50a^{2}b^{3} + 25b^{5}) + \frac{\sin n\theta}{\sqrt{5}} (a^{5} - 50a^{3}b^{2} + 125ab^{4})$$

$$w = a^{2} + 5b^{2}$$
(6)

Properties

$$\int_{1}^{1} x(a,b) - y(a,b) - 2z(a,b) = 0$$

$$2. z(a,a) + r^{n} (20\cos n\theta - \frac{76\sin n\theta}{\sqrt{5}})(4T_{3,a-1}P_{a}^{5} + 6P_{a}^{3} - 6T_{3,a} + PR_{a} - T_{4,a}) = 0$$

- 3. $(w(2^n,1)-3J_{4n})$ is a nasty number.
- 4. $2(w(2^n,1)-j_{4n})$ is a cubical integer

Remark 1

To analyse the nature of the solutions, one has to go for particular values to n. For simplicity and clear understanding, taking n = 0 in (6), the corresponding values of the integer quadruples (x, y, z, w) satisfying $xy + 6z^2 = w^5$ are represented by

$$x = a^{5} - 50a^{3}b^{2} + 125ab^{4} + 5a^{4}b - 50a^{2}b^{3} + 25b^{5}$$

$$y = a^{5} - 50a^{3}b^{2} + 125ab^{4} - 5a^{4}b + 50a^{2}b^{3} - 25b^{5}$$

$$z = 5a^{4}b - 50a^{2}b^{3} + 25b^{5}$$

$$w = a^{2} + 5b^{2}$$
(7)

The integer quadruples (x, y, z, w) represented by (7) satisfies the following properties:

1.
$$x(a,b) - y(a,b) - 10T_{4a^2} + 200T_{3a} \equiv 0 \pmod{50}$$

$$2.240F_{5a3} - 480F_{4a3} - 300P_a^3 + 540T_{3a} + 304T_{4a} - 152T_{6a} - x(a,1) - y(a,1) = 0$$

3.
$$30[z(a,a) + y(a,a) - x(a,a) - 2400F_{5a,3} + 900P_a^4 + 700T_{3a}]$$
 is a nasty number.

4.
$$4[y(1,b)-z(1,b)+w(1,b)-250T_{3,b^2}+85T_{6,b}\times255T_{4,b}-170T_{5,b}]$$
 is a cubical integer.

5.
$$8[x(1,b) + y(1,b) - 500T_{3k^2} + 350T_{4k}]$$
 is a biquadratic integer.

6.
$$z(2^n,1) - w(2^n,1) - 66 = 5j_{4n} - 51j_{2n}$$

7.
$$x(2^n, 1) - y(2^n, 1) + z(2^n, 1) + 90 = 15KY_{2n} - 540J_{2n}$$

8. If (x_0, y_0, z_0, w_0) is any given solution of (1) then each of the following quadruples

satisfies (1):

$$(i)(6x_0 - 25y_0 - 60z_0, -x_0 + 6y_0 + 12z_0, x_0 - 5y_0 - 11z_0, w_0)$$

$$(ii)(-3x_0 + 8y_0 + 24z_0, 2x_0 - 3y_0 - 12z_0, -x_0 + 2y_0 + 7z_0, w_0)$$

$$(iii)(-6x_0 + 49y_0 + 84z_0, x_0 - 6y_0 - 12z_0, -x_0 + 7y_0 + 13z_0, w_0)$$

$$(iv)(-2x_0 + 3y_0 + 12z_0, 3x_0 - 2y_0 - 12z_0, -x_0 + y_0 + 5z_0, w_0)$$

$$(v)(3x_0-2y_0-12z_0,-2x_0+3y_0+12z_0,x_0-y_0-5z_0,w_0)$$

Remark 2

It is also worth mentioning here that we get integer solutions when $n = 1, 2, 3, \dots$ in (1).

For the sake of understanding we exhibit below the integral solutions corresponding to

$$n = 1, k = 1, 2$$

$$n = 2, k = 1, 2$$

Exhibit 1:
$$n = 1, k = 1$$

$$x = 2a^5 - 100a^3b^2 + 250ab^4 - 20a^4b + 200a^2b^3 - 100b^5$$

$$y = -30a^4b + 300a^2b^3 - 150b^5$$

$$z = 5a^4b - 50a^2b^3 + 25b^5 + a^5 - 50a^3b^2 + 125ab^4$$

$$w = a^2 + 5b^2$$

Exhibit 2:
$$n = 1, k = 2$$

$$x = 3a^5 - 150a^3b^2 + 375ab^4 - 15a^4b + 150a^2b^3 - 75b^5$$

$$y = a^5 - 50a^3b^2 + 125ab^4 - 35a^4b + 350a^2b^3 - 175b^5$$

$$z = 10a^4b - 100a^2b^3 + 50b^5 + a^5 - 50a^3b^2 + 125ab^4$$

$$w = a^2 + 5b^2$$

Exhibit 3:
$$n = 2, k = 1$$

$$x = -2a^{5} + 100a^{3}b^{2} - 250ab^{4} - 70a^{4}b + 700a^{2}b^{3} - 350b^{5}$$

$$y = (-6)[a^{5} - 50a^{3}b^{2} - 125ab^{4} + 5a^{4}b - 50a^{2}b^{3} + 25b^{5}]$$

$$z = -20a^{4}b + 200a^{2}b^{3} - 100b^{5} + 2a^{5} - 100a^{3}b^{2} + 250ab^{4}$$

$$w = a^{2} + 5b^{2}$$

$$w = a^2 + 5b^2$$

Exhibit 4: $n = 2, k = 2$

$$x = 3a^{5} - 150a^{3}b^{2} + 375ab^{4} - 105a^{4}b + 1050a^{2}b^{3} - 525b^{5}$$

$$y = -5(a^{5} - 50a^{3}b^{2} + 125ab^{4}) - 19(5a^{4}b - 50a^{2}b^{3} + 25b^{5})$$

$$z = -5a^{4}b + 50a^{2}b^{3} - 25b^{5} + 4a^{5} - 200a^{3}b^{2} + 500ab^{4}$$

$$w = a^{2} + 5b^{2}$$

Approach 2

Taking
$$n = 0$$
 in (3), we have,
 $u^2 + 5v^2 = w^5$ (8)

whose solution is given by

$$u_0 = a^5 - 50a^3b^2 + 125ab^4$$

$$v_0 = 5a^4b - 50a^2b^3 + 25b^5$$

Again taking n = 1 in (3), we have,

$$u^2 + 5v^2 = (k^2 + 5)w^5 (9)$$

whose solution is represented by

$$u_1 = ku_0 - 5v_0$$

$$v_1 = u_0 + ku_0$$

The general form of integral solutions to (8) is given by

$$\begin{pmatrix} u_s \\ v_s \end{pmatrix} = \begin{pmatrix} A_s & i\sqrt{5}B_s \\ -\frac{i}{\sqrt{5}}B_s & A_s \end{pmatrix} \begin{pmatrix} u_0 \\ v_0 \end{pmatrix}, \quad s = 1, 2, 3, \dots$$

where

$$A_{s} = \frac{(k + \sqrt{5}i)^{s} + (k - \sqrt{5}i)^{s}}{2}$$

$$B_{s} = \frac{(k + \sqrt{5}i)^{s} - (k - \sqrt{5}i)^{s}}{2}$$

Thus in view of (2), the following quadruple of integers based on (x_0, y_0, z_0, w_0) also

satisfy (1)

Quadruple: (x_s, y_s, z_s, w_s) , where

$$x_{s} = (u_{0} + v_{0})A_{s} + i\sqrt{5}(v_{0} - \frac{u_{0}}{5})B_{s}$$

$$y_{s} = (u_{0} - v_{0})A_{s} + i\sqrt{5}(v_{0} + \frac{u_{0}}{5})B_{s}$$

$$z_{s} = v_{0}A_{s} - i\sqrt{5}(\frac{u_{0}}{5})B_{s}$$

$$w_{s} = a^{2} + 5b^{2}$$

The above values of x_s, y_s, z_s satisfy the following recurrence relations respectively

$$x_{s+2} - 2kx_{s+1} + (k^2 + 5)x_s = 0$$

$$y_{s+2} - 2ky_{s+1} + (k^2 + 5)y_s = 0$$

$$z_{s+2} - 2kz_{s+1} + (k^2 + 5)z_s = 0$$

Properties 1

1.
$$x(a,a,k) + y(a,a,k) - (152A_s - 40i\sqrt{5}B_s)[120F_{5,a,3} - 240F_{4,a,3} + 150P_a^3 - 30T_{3,a} + 2T_{4,a} - T_{6,a}] = 0$$

2. $S_a + 30PR_b + 12T_{4,a} - 6SO_a - 60T_{3,b} + 30T_{4,b} - 6w(a,b) = 1$
3. $2x(a,a,k) - 2y(a,a,k) + (40A_s + 152\frac{i}{\sqrt{5}}B_s)[8T_{3,a-1}.P_p^5 + SO_a + PR_a - T_{4,a}] = 0$
 $4z(a,1,k) = A_s(120F_{4,a,3} - 45(OH_a) - 90F_{4,a} - 30F_{3,a} + 25) - \frac{iB_s}{\sqrt{5}}(4T_{3,a-1}.P_a^3 - 294P_a^3 - 76F_{4,a} + 223PR_a) = 0$
5. $2z(a,a,k) + (20A_s + \frac{i}{\sqrt{5}}76B_s)(8T_{3,a-1}.P_a^5 + SO_a + 2T_{3,a} - T_{4,a}) = 0$

Approach 3

Substituting (4) in (3) and using the method of factorisation, define $(u+i\sqrt{5}v)=(k+i\sqrt{5})^n(a+i\sqrt{5}b)^5$

Expanding binomially and equating real and imaginary parts, we have $u = f(k)(a^5 - 50a^3b^2 + 125ab^4) - 5g(k)(5a^4 - 50a^2b^3 + 25b^5)$ $v = g(k)(a^5 - 50a^3b^2 + 125ab^4) + f(k)(5a^4 - 50a^2b^3 + 25b^5)$ where

$$f(x) = \sum_{r=0}^{\left[\frac{n}{2}\right]} (-1)^r m c_{2r} k^{n-2r} 5^r$$

$$g(x) = \sum_{r=1}^{\left[\frac{n+1}{2}\right]} (-1)^{r-1} n c_{2r-1} k^{n-2r+1} 5^{r-1}$$
(10)

In view of (2) and (10) the corresponding integer solution (x, y, z, w) to (1) is obtained as

$$x = [f(k) + g(k)](a^5 - 50a^3b^2 + 125ab^4) + [f(k) - 5g(k)](5a^4 - 50a^2b^3 + 25b^5)$$

$$y = [f(k) - g(k)](a^5 - 50a^3b^2 + 125ab^4) - [f(k) + 5g(k)](5a^4 - 50a^2b^3 + 25b^5)$$

$$z = g(k)(a^5 - 50a^3b^2 + 125ab^4) + f(k)(5a^4 - 50a^2b^3 + 25b^5)$$

$$w = a^2 + 5b^2$$

Conclusion

In conclusion, one may get different patterns of solutions to (1) and their corresponding properties.

References

- [1] L.E. Dickson, History of Theory of Numbers, Vol. 11, Chelsea Publishing company, New York (1952).
- [2] L.J. Mordell, Diophantine equations, Academic Press, London(1969).
- [3] Carmichael ,R.D.,The theory of numbers and Diophantine Analysis,Dover Publications, New York (1959)
- [4] M.A. Gopalan & A. Vijayashankar, An Interesting Diophantine problem $x^3 y^3 = 2z^5$, Narosa Publishing House, Pp 1-6, 2010.
- [5] M.A. Gopalan & A.Vijayashankar, *Integral solutions of ternary quintic Diophantine equation* $x^2 + (2k+1)y^2 = z^5$, International Journal of Mathematical Sciences 19(1-2), 165-169, (jan-june 2010)
- [6] M.A. Gopalan, G. Sumathi & S. Vidhyalakshmi, *Integral solutions of non-homogeneous ternary quintic equation in terms of pells sequence* $x^3 + y^3 + xy(x + y) = 2Z^5$, accepted for Publication in JAMS (Research India Publication)
- [7] S. Vidhyalakshmi, K.Lakshmi and M.A.Gopalan, *Observations on the homogeneous quintic equation with four unknowns* $x^5 y^5 = 2z^5 + 5(x+y)(x^2-y^2)w^2$, accepted for Publication in International Journal of Multidisciplinary Research Academy(IJMRA)
- [8] M.A. Gopalan & A.Vijayashankar, *Integral solutions of non-homogeneous quintic equation with five unknowns* $xy zw = R^5$, Bessel J.Math.,1(1),23-30,2011.
- [9] M.A. Gopalan & A.Vijayashankar, solutions of quintic equation with five unknowns $x^4 y^4 = 2(z^2 w^2)P^3$, accepted for Publication in International Review of Pure and Applied Mathematics.
- [10] M.A. Gopalan, G. Sumathi & S.Vidhyalakshmi, On the non-homogenous quintic equation with five unknowns $x^3 + y^3 = z^3 + w^3 + 6T^5$, accepted for Publication in International Journal of Multidisciplinary Research Academy (IJMRA).