
International Journal of Mathematics Research. 
ISSN 0976-5840 Volume 5, Number 1 (2013), pp. 65-76 
© International Research Publication House 
http://www.irphouse.com 
 

 

Some Relations on Sixth Order Mock Theta Functions 
 

Roselin Antony 
 

Department of Mathematics, College of Natural and Computational Sciences,  
P.O. Box 231, Mekelle University, Mekelle, Ethiopia 

E-mail: roselinmaths@gmail.com 
 

 
Abstract 

 

During the last years of his life, Ramanujan defined 17 functions F(q), where  | q | < 1. 
Ramanujan named them as mock theta functions, because as q radially approaches any 
point ie2  (r rational), there is a theta function Fr(q) with F(q) – Fr(q) = 0 (1).  In this 
paper, we obtain relations connecting mock theta functions, partial mock theta 
functions of order 6 and infinite products analogous to the identities of Ramanujan. 
Keywords: Mock theta functions, partial mock theta functions 
 
1. Preliminaries and Known Results 
The first detailed description of mock theta functions was given by Watson in his 
celebrated Presidential Address delivered at the meeting of the London Mathematical 
Society in November, 1935. 
Ramanujan’s general definition of a mock theta function is a function of )(qf  defined 
by a q-series convergent when   | q | < 1 which satisfies the following two conditions, 
(a) For every root   of unity, there exist a  -function  (q) such that difference 
between )(qf  and  (q) is bounded as q    ,  radially. 
(b) There is no single theta function which works for all  , i.e. for every  -
function  (q)  there is some root of unity   for which )(qf  minus the theta function 
 (q) is unbounded as  q     radially.  
 Ramanujan gave a list of seventeen mock theta functions and labeled them as 
third, fifth and seventh orders without giving any reason for his classification. A study 
of these sums and expansions has been made by Watson (1), Agarwal (2)  and Andrews 
(3). Later on, Andrews and Hickerson (4), Choi (5) and Gordon and Mc Intosh (6) 
studied certain q-series in the Lost Notebook and named them as sixth, eighth and tenth 
order mock theta functions. Although Gordon and Mc Intosh (6) have given definitions 
of order of mock theta functions, and later Bringmann and Ono (7 & 8) have given 
clarification for the order of the mock theta functions. 
 Also, relations connecting mock theta functions and partial mock theta 
functions are given by Srivastava (9) and Denis et al. (10). Bhaskar Srivastava (11 & 
12) provided relations connecting mock theta functions and partial mock theta 
functions of order 3, 5, 6 and 10 and relations connecting mock theta functions, partial 
mock theta functions of order 2, 3 and 6 and Ramanujan’s function μ(q) .Recently, 
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Roselin Antony and Atakalti Araya(13) obtained relations connecting mock theta 
functions of order 2 and infinite products analogous to the identities of 
Ramanujan.Also,Roselin Antony and Hailemariam Fiseha(14) obtained relations 
connecting mock theta functions of order 10 and infinite products analogous to the 
identities of Ramanujan. 
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is a mock theta function, then the corresponding partial mock theta function is denoted 
by the terminating series, 
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Mock theta functions of order 6 ; 
In Ramanujan’s lost notebook VII, Andrews and Hickerson defined the mock theta 
functions of order 6 as follows; 
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Ramanujan, in chapter 16 of his second notebook defined theta functions as follows; 
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   [Ramanujan (15)] and [Berndt (16)] 
An identity due to Euler is,  
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   [Euler (17); chap. 16] and [Andrews (18); Eqn.(2.2.6)] 
The special cases of the above identity are ; 
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The Famous Roger’s –Ramanujan identity is, 
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    [Rogers (19)] and [Ramanujan (20)]  
Hahn (21) and Hahn (22) defined the septic analogue of the Rogers- Ramanujan 
functions as  
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The Jackson – Slater identity; 
Jackson (23) discovered the following identity; 
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This identity was independently rediscovered by Slater (24, Eqn.39) who also 
discovered its companion identity[Slater (24, Eqn.38)] 
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The identity analogous to the Rogers- Ramanujan identity is the so-called Gollnitz – 
Gordon identity given by,  
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    [Gordon (25)] and [Gollnitz (26)] 
The nonic analogue of Rogers – Ramanujan functions is  
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These equalities are due to Bailey [Bailey (27); Eqn.(1.6),(1.7) and (1.8)]. 
We shall make use of the following known identity; 
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    [Srivastava(28) (Eqn. 4.4)]      (1.26) 

 

2. Main Results 
We shall establish relations connecting mock theta functions, partial mock theta 
functions of order 6. 

A)  Taking 2/)1(  mm
m q  in (1.26) and by (1.10), we get  
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Similarly, by taking 
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functions of order 6 and the infinite product C(q). 
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functions and the infinite product E(q). 
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In the similar way, by assuming 
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 , relations connecting mock theta functions of order six and 

the infinite products J(q), K(q) and L(q) can be obtained. 
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v) Taking 
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vi) Taking 
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vii) Taking 
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In the same way, by assuming  
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 , relations connecting 

mock theta functions of order six and the infinite products N(q) and P(q) can be 
obtained. 
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