Computational Sequence Analysis and Functional Annotation of KGM_05782 Protein of Danaus Plexippus

Meenu Sharma¹*, Meenu Saini² and Maneet Singh³

¹Deptt. of Bioinformatics, ADI Biosolution, SCF 25, Phase 3b2, Mohali, Punjab, INDIA ²Deptt. of Bioinformatics, Kurukshtra University, Haryana, INDIA ³ADI Backoffice professionals Pvt Ltd, E-47, Phase-8, Mohali, Punjab, INDIA *Corresponding Author e-mail: <u>ms.meenu@ymail.com</u>

Abstract

Background: Orthology properties suggest that the Lepidoptera are the top evolving insect order so far observed. Among them Monarch butterflies are well known for their amazing long distance annual migration similar to vertebrates to reach their overwintering basis of central Mexico by expedition of nearly 4000km. The study is focused to identify the main fuel and energy unit in this insect responsible for such amazing behavior in addition to biochemical effects.

A hypothetical protein constitutes a fraction of proteome but provides bulk of information. The work is an effort put forward to assign functions on the basis of homology and comparative studies to unknown segments. The Utilization of Computational techniques (tools and biological databases) aided in understanding the proteome in a much effective way as compared to the traditional approaches that are majorly time consuming, costly and unpredictable. Current annotation work involves prediction of conserved domain like YjgF_YER057c_UK that belongs to Adenine nucleotide alpha hydrolases superfamily, motifs, ligand Binding site, Homotrimer interaction site, protein structure at various levels and assigning structure, functions, etc that will facilitate further research and correlate these facts with its amazing flight capacity.

Index Terms— Hypothetical Proteins, Comparative analysis, Scientific Data Mining, Sub-cellular location, Interactive Data exploration and discovery, modeling and structure prediction, Pattern Analysis.

1 Introduction

Till date various genome projects have been compiled and some are still in the pipe line.[1] The completion of the genome sequences provides a platform for understanding genetic complexity and elucidating genetic variations contributing to diverse traits and diseases. The Danaus Plexippus has currently become the center of interest with numerous reasons. Monarchs are milkweed specialists, and their evolved chemical defense mechanism has led to the monarch's widely known involvement in a mimicry complex with the viceroy butterfly [2] and arose the research interests worldwide. The High-throughput biology technologies have yield complete genome sequences and functional genomics data for several organisms.[3] Till date various genome projects have been compiled including humans, animals and plants.[4] Danaus Plexippus also belong to one of the hot genome sequencing project in pipeline [5]. However, it has been found that nearly 50% of genes are often labeled hypothetical, unknown, uncharacterized, unnamed adding up to the hurdle in scientific study and understanding. Inspite of the fact that biological properties, structure and function of proteins encoded by such genes are unknown but they can be predicted with various comparative approaches. [6]

Proteins being the ultimate effecter molecules perform a wide range of functions that may involve transportation, structural components, stimulation, molecular scissors, cascades, etc [7][8]suggesting that these un-annotated and uncharacterized proteins may also play some lethal roles essential for organism's survivability. The Danaus plexippus belongs to rapidly evolving Lepidoptera Order that contains few hits against our considered protein sequence[5] but still share 70.8% average amino acid identity with Bombyx that belongs to Diptera.[2][5] The integration of wide range of data from the related and similar sequences aids in the characterization of hypothetical proteins and facilitates the functional annotation. The features of the monarch genome and its proteome provide a treasure trove for furthering our understanding of monarch butterfly migration, a solid background for population genetic analyses between migratory and non-migratory populations, and a basis for future genetic comparison of the genes involved in navigation yet to be discovered in other long-distance migrating species, including vertebrates like migratory birds. [2]

2 Methodology

2.1 Sequence retrieval

Danaus Plexippus a well known Monarch butterfly comprises of 272 mb genome which contain 16433 plus proteins, among which approximately 9627 protein are hypothetical or unknown whose function are not clearly defined yet. The work involve first finding of some hypothetical protein sequences from Danaus Plexippus proteiom. The hypothetical protein sequences against Danaus plexippus were retrieved from ftp NCBI database [9] using entrez search engine and were studied. These sequences were explored using NCBI Blast tools namely Blastp. Conservation of various domains was studied and out of these protein sequences one is selected (protein named KGM_05782) and studied further. To analyze the hypothetical protein and to assign their physicochemical, structural and functional properties various bioinformatics tools and databases were cross referred.

2.2 Physicochemical and functional characterization

The hypothetical protein in Danaus plexippus was studied for various physicochemical properties majorly theoretical Isoelectric point (pI), molecular weight, total number of positive and negative residues, aliphatic index [10], extinction coefficient [11], instability index [12] and grand average hydropathy (GRAVY) [13] using the Expasy's protein server [14]. These basic properties provided a foundation and enlightened the path for the future exploration.

2.3 Conserved domain and family

The idea regarding the conserved domains was also drawn form the Blastp results. We also selected some of the well established online tools and databases for this purpose. PFAM [15] [16], InterProScan [17] [18] and CDD-Blast [19] [20] were to name a few that were used to predict the conserved domains and families present in the unknown protein sequence.

2.5 Prediction of transmembrane Region

A transversing protein can function as a channel protein. Taking this fact into account we performed analysis for detection of transmembrane regions in the hypothetical protein. Online tools working for proteins input like SMART [21] [22], TMHMM [23] [24], PSORT [25] [26] and Phobius [27] [28] server were used to characterize whether the protein is soluble or transmembrane in nature [29].

2.6 Protein structure prediction

Analysis is considered incomplete if it cannot exist in the 3D world. For this we proceeded with 3D structure prediction and comparative study with the help of Swiss Model [30] [31] [32], pdbsum [31] [33] [34]. For template based modeling modeler 9v7 [35] [36] was also used. Protein structure visualization is done by SwissPdbviewer [31] [37] and PyMol [38] that revealed some very interesting facts about the considered protein.

3 Results

3.1 Physicochemical Analysis

The hypothetical protein KGM_05782 has sequence length of 746aa with all natural occurring amino acids with molecular weight of 83344.6 Da. [Fig1(a)] The isoelectic point 5.38 can be further used for the isolation during wetlab studies. It was also established that the protein had 2.7% cystein residues accounting for 42 sulphur atoms. [Fig1(b)]. It should be noted that disulfide bridges formed by cysteine residues are permanent component of protein primary structure and cysteine is at the center of catalytic site of thiol enzymes. This is further studied and aromatic-sulphur interactions which were found between TYR₄₈₂ - CYS₄₉₅ accounting for 4.049Å and between TRP₅₈₄ - CYS₅₄₄ accounting for 4.26Å using PIC Web browser [Fig1(c), Fig1(d)].

Number of amino acids: 746 Molecular weight: 83344.6 Theoretical pI: 5.38 Amino acid composition: Ala (A) 61 8.2% 5.5% Arg (R) 41 Asn (N) 34 4.6% Asp (D) 49 6.6% Cys (C) 20 2.7% Gln (Q)28 3.8% Glu (E) 51 6.8% Gly (G) 45 6.0% His (H) 23 3.1% Ile (I) 39 5.2% 68 9.1% Leu (L) 4.4% Lys (K) 33 2.9% (M) Met 22 1.7% Phe (F) 13 Pro (P) 28 3.8% Ser (S) 48 6.4% Thr (T) 36 4.8% Trp (U) 6 0.8% Tyr (Y) Val (V) Pyl (O) Sec (U) 36 4.8% 65 8.7% 0 0.0% 0.0% (B) 0 0.0% (Z) 0 0.0% (X) 0 0.0% (a) Total number of negatively charged residues (Asp + Glu): 100 Total number of positively charged residues (Arg + Lys): 74 Atomic composition: C 3654 H 5770 N 1016 1129 S 42 Formula: C3654H5770N1016O1129S42 Total number of atoms: 11611 Extinction coefficients: Extinction coefficients are in units of M^{-1} cm⁻¹, at 280 nm measured in water. 87890 Ext. coefficient Abs 0.1% (=1 g/l) 1.055, assuming all pairs of Cys residues form cystines 86640 Ext. coefficient Abs 0.1% (=1 g/l) 1.040, assuming all Cys residues are reduced Estimated half-life: The N-terminal of the sequence considered is M (Met). The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). >20 hours (yeast, in vivo). >10 hours (Escherichia coli, in vivo). Instability index: The instability index (II) is computed to be 46.30 This classifies the protein as unstable.

Aliphatic index: 89.38

Grand average of hydropathicity (GRAVY): -0.251

Carbon

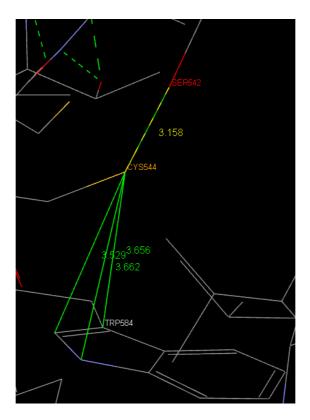
Oxygen

Sulfur

Hydrogen

Nitrogen

Intraprotein Aromatic-Sulphur Interactions



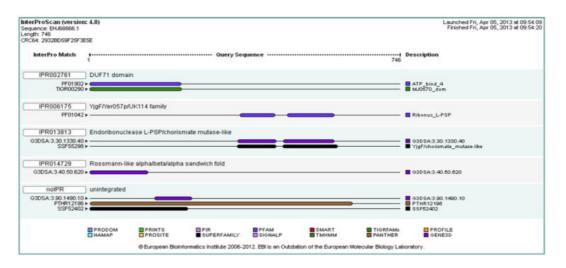
Model 1.pdb

Aromatic-Sulphur Interactions within 5.3 Angstroms

Position	Residue	Chain	Position	Residue	Chain	D(Centroid-Sul	phur) Angle
482	TYR	E	495	CYS	E	4.49	124.20
584	TRP	E	544	CYS	E	4.26	148.12
				(c)			

Fig1(a) and (b) shows the physicochemical properties details obtained from expassy and (c) shows the aromatic-sulphur interactions details obtained from PIC Web browser

Fig(d) green lines are interaction links between trp and cys showing aromatic-sulphur interations in a PDB file viewer


3.2 Predicted Domains and Families

For Domain predictions CDD-Blast [Fig 2] along with interproscan was used.

	ical protein KGM_05782 [Danaus plexipp nmary show options >					
or uprited aut	1 125	254 075	510 625	22416 222	746	
luery seq. Lighted Binding Site		homotriner interaction site AAA putative active site AAA homotriner interaction si		and so the	-	
pecific hits	Alpha_ANH_like_IV	ex_ARM1_C_1	eu AANH C 2			
on-specific	MJ0570_dom	Viet_VER#S7c_	Vief_VER457c_UK114_Fa			
its	arC0G00187	TdcF	TIGR00004			
	ATP bind 4	VJsf_VER457c_	Ribonuc_L-PSP			
	TIGR00289	Pilhonuc_L-PSP	TdcF			
		TIGR00004				
uperfamilies	AANH_like superfamily	VJ9F_VER467c_UK	V39F_VER057c_UK114_Fa			
ulti-domains						
uiti-domains	C0G2102					
uiti-domains	C0G2102					
uiti-domains			Sector 201			
1	1	Search for similar domain architectures 📗 😰	Refine search 2			
1	1	Search for Similar Contain architectores	Refine search			
ist of domai	n hits	Description	Nemie Search	Pssmld		
ist of domai	n hits Mcc01994), This is a subfamily of Adenin	Description nucleotide alpha hydrolases superfamily.Ade	ninosine	238952	no	2.55e-8
ist of domai Alpha_ANH_like_ eu_AANH_C_1[c	n hits Mcd01994), This is a subfamily of Adenin 308155), A group of hypothetical eukaryotic	Description re nucleotide alpha hydrolases superfamilyAde proteins, characterized by the presence of an a	ninosine	238952 100012	no no	2.55e-6 6.95e-2
ist of domai Alpha_ANH_like eu_AANH_C_1[c eu_AANH_C_2]c	n hits M(cd01994), This is a subfamily of Adenin 309155), A group of thypothetical eukaryotic 309156), A group of thypothetical eukaryotic	Description Description the nucleotide alpha hydrolases superfamily.Ade proteins, characterized by the presence of an a proteins, characterized by the presence of an a	ninosine adenine adenine	238952 100012 100013	no no no	E-valu 2.55e-8 6.95e-2 3.80e-1
ist of domai Alpha_ANH_like eu_AANH_C_1[c eu_AANH_C_2[c MJ0570_dom[Ti0	n hits Mcc01994), This is a subfamily of Adenin d081553, A group of hypothetical eukaryotic d08156], A group of hypothetical eukaryotic 760229(J), MD570-related uncharacterize	Description Description e nucleotide alpha hydrolases superfamily.Ade proteins, characterized by the presence of an a proteins, characterized by the presence of an d iomain, Proteins with this uncharacterized do	ninosine adenine main include two apparent ortholog f	238952 100012 100013 232907	no no no	2.55e-8 6.95e-3 3.80e-1 5.32e-4
ist of domai Alpha_ANH_like_ eu_AANH_C_1[c eu_AANH_C_2](c arCOG0187[TIG arCOG0187[TIG	n hits Mcc01994], This is a subfamily of Adenin 309159], A group of hypothetical eukayoti 309159, A group of hypothetical eukayoti R00290], MU0570-related uncharacterized R003679], ar-Co000187 universal archaes	Description Description te nucleotide alpha hydrolases superfamilyAde proteins, characterized by the presence of an a proteins, characterized by the presence of an a d domain, Proteins with this uncharacterized do interlab-binding-domain47e-45-binding-domain	ninosine adenine main include two apparent ortholog f n containing ABC transporter, ATP-bir	238952 100012 100013 232907 188368	no no no no	2.55e- 6.95e- 3.80e- 5.32e- 1.39e-
ist of domai Alpha_ANH_like Bu_AANH_C_1[c Bu_AANH_C_2[c MJ0570_dom[TIC BrCOG0187[TIG ATP_bind_4[pfan	n hits M(co01994), This is a subfamily of Adenin d08155], A group of hypothetical eukaryoti d081561, A group of hypothetical eukaryoti d081562, A group of hypothetical eukaryoti R080791, arCo000187 universal archaea d09021, XF1-binding region. This family of	Description bescription e nucleoside alpha hydrolases superfamily.Ade proteins, characlerized by the presence of an i proteins, characlerized by the presence of an i i domain, Proteins with this uncharacterized do i metal-binding-domain/4Fe-48-binding-domain is al proteins probably binds AFT. This domain is al	Ininosine idenine idenine main include two apparent ortholog f n containing ABC transporter, ATP-bio bout 200 amino acids long	238952 100012 100013 232907 188368 202036	no no no no no no	2.55e- 6.95e- 3.80e- 5.32e- 1.39e- 7.14e-
ist of domai Apha_ANH_like_ su_AANH_C_1[c su_AANH_C_2[c KJ0570_dom[TIC srC060187[TIC ATP_bind_4[pfan TicGR00289[TICR	n hits M(cd01994), This is a subfamily of Adenin 305155), A group of hypothetical eukaryotic 305156), A group of hypothetical eukaryotic 700220), MU570-related uncharacterized 703670), arCo-000187 universal archaes 3019021, ATP-binding region; This family of 002690, TIGR02289 family protein; Homol	Description Description te nucleotide alpha hydrolases superfamilyAde proteins, characterized by the presence of an a proteins, characterized by the presence of an domain; Proteins with this uncharacterized do I metal-binding-domain/4Fe-48-binding-domain proteins probably binds ATP This domain is al gous proteins prelated to MUG570 of Methanocco	ninosine adenine main include two apparent ortholog f in containing ABC transporter, ATP-bir bout 200 amino acids long rocus jannaschi include both the	238952 100012 100013 232907 188368 202036 129390	no no no no no no no	2.55e- 6.95e- 3.80e- 5.32e- 1.39e- 7.14e- 5.61e-
ist of domai Alpha_ANH_like_ u_AANH_C_1[c u_AANH_C_2[c MJ0570_dom[Ti0 srCoB0187[Ti0 TTP_bind_4[pfan Ti0GR00289[Ti0R rj6_YER057c_1]	n hits M(c001994), This is a subfamily of Adenin d08155), A group of hypothetical eukaryotic d05156), A group of hypothetical eukaryotic d051561, A group of hypothetical eukaryotic R002001, MU570-related uncharacterized R003071, ar-CO000187 unhersal archaea h019021, ATP-binding region; This family of 002691, TIGR00289 family protein; Homol KX114_famil(d004481, V); d9; YEROS7c, ar	Description bescription te nucleosite alpha hydrolases superfamilyAde proteins, characlerized by the presence of an a proteins, characlerized by the presence of an i domain, Proteins with this uncharacterized do I metal-binding-domain/4Fe-43-binding-domain proteins probably binds ATF. This domain is al gous proteins related to MUS70 of Methanoco UK114 belong to a large family of proteins proteins proteins proteins related to MUS70 of Methanoco	Ininosine idenine idenine idenine main include two apparent otholog f n containing ABC transporter, ATP-bio bout 200 amino acids long crcus jannaschi include both the esent in bacteria,	238952 100012 100013 232907 188368 202036 129390 100004	no no no no no no no	2.55e- 6.95e- 3.80e- 5.32e- 1.39e- 7.14e- 5.61e- 2.92e-
ist of domai Alpha_ANH_like eu_AANH_C_1[c eu_AANH_C_2](c arCoG00187[TIG arCoG00187[TIG AITP_bind_4[nfan TIGR00289[TIGR YigF_YER057c_1	Mcc01994], This is a subfamily of Adenin 305155], A group of hypothetical eukaryotic 305156], A group of hypothetical eukaryotic 700200], MU670-00187 unhersal archaes 301902, ATP-binding region, This family of 00269], TIGR0289 family protein; Homoti XK114_family(600448], YigF, YER037c, ar XK114_family(600448], YigF, YER037c, ar	Description proteins, characterized by the presence of an a proteins, characterized by the presence of an a proteins, characterized by the presence of an a tomain, Proteins with this uncharacterized do threata-binding-domain/4Fe-48-binding-domain proteins probably binds ATP. This domain is at gous probably binds ATP. This domain is at gous probably binds ATP. This domain is at double proteins probably binds and MJ0570 of Methanoco d UK114 belong to a large family of proteins pr d UK114 belong to a large family of proteins pr	Ininosine idenine idenine idenine main include two apparent otholog f n containing ABC transporter, ATP-bio bout 200 amino acids long crcus jannaschi include both the esent in bacteria,	238952 100012 100013 232907 188368 202036 129390 100004 100004	no no no no no no no no	2.55e- 6.95e- 3.80e- 5.32e- 1.39e- 7.14e- 5.61e- 2.92e- 4.97e-
ist of domai Alpha_ANH_Like_ leu_AANH_C_1[c leu_AANH_C_2[c MU0570_dom[Tito larCool0187[Tito larC	n hits M(c001994), This is a subfamily of Adenin d08155), A group of hypothetical eukaryotic d08156), A group of hypothetical eukaryotic d08156), A group of hypothetical eukaryotic M08269), arCo000187 unhersal archaea M09021, ATP-binding region; This family of 00269), TIGR00289 family grotein; Homoli XC114, family(c001448), YigF, YER057c, ar XC114, family(c001448), YigF, YER057c, ar	Description proteins, characterized by the presence of an a proteins, characterized by the presence of an a proteins, characterized by the presence of an a tomain, Proteins with this uncharacterized do threata-binding-domain/4Fe-48-binding-domain proteins probably binds ATP. This domain is at gous probably binds ATP. This domain is at gous probably binds ATP. This domain is at double proteins probably binds and MJ0570 of Methanoco d UK114 belong to a large family of proteins pr d UK114 belong to a large family of proteins pr	Intensine	238952 100012 100013 232907 188368 202036 129390 100004 100004 223329	no no no no no no no	2.55e- 6.95e- 3.80e- 5.32e- 1.39e- 7.14e-

Fig2: CDD-Blast result page showing conserved Domains, family and superfamilies

In Interpro five domains were predicted namely, DUF71 domain, YjgF/Yer057p/UK114 family, Endoribonuclease L-PSP/chorismate mutase-like, Rossmann –like alpha/beta/alpha sandwich fold and unintegrated domain in cross references with PRODOM, PRINTS, PIR, PFAM, SMART, TIGERFAMS, PROFILES, HAMAP, PROSITE, SUPERFAMILY, SIONALP, TMHMM, PANTHER AND GENE3D databases.[Fig 3]

Fig3: Results from InterproScan showing various domains predicted in KGM_05782 protein sequence.

3.3 Prediction of Transmembrane Domain

Transmembrane domain was predicted as a common Domain in hypothetical protein KGM_05782 of Danaus plexippus by using various online tools/software such as SMART, TMHMM, PSORT and Phobius.

# gi 357614030 gb EHJ68866.1	Length: 746			
# gi_357614030 gb_EHJ68866.1	Number of predict	ed TMHs:	1	
# gi_357614030 gb_EHJ68866.1	Exp number of AAs	in TMHs:	23.8725	53
# gi_357614030_gb_EHJ68866.1_	Exp number, first	60 AAs:	0.05476	5
# g1_357614030_gb_EHJ68866.1_	Total prob of N-i	n:	0.98913	1 ·
gi_357614030_gb_EHJ68866.1_	TMHMM2.0	inside	1	139
gi_357614030_gb_EHJ68866.1_	TMHMM2.0	TMhelix	140	162
gi_357614030_gb_EHJ68866.1_	TMHMM2.0	outside	163	746

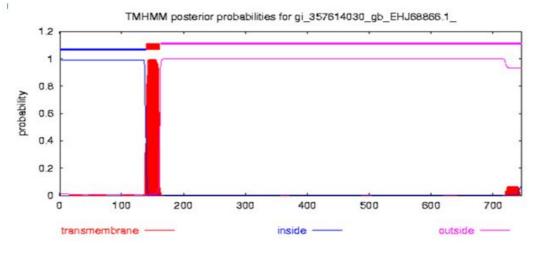


Fig4 Transmembrane region predicted by TMHMM

Dom	ains	within the query sequence of	f 746 residues
1	100	200	
	_	transmembrane domain	
		transmembrane domain Position: 140 to 162	

Confidently predicted domains, repeats, motifs and features:

Name	Begin	End	E-value
transmembrane	140	162	-
low complexity	276	292	-
low complexity	360	368	-
low complexity	549	564	-
low complexity	703	721	-

Fig5 Transmembrane region as predicted in SMART

```
Prediction of gi|357614030|gb|EHJ68866.1|
```

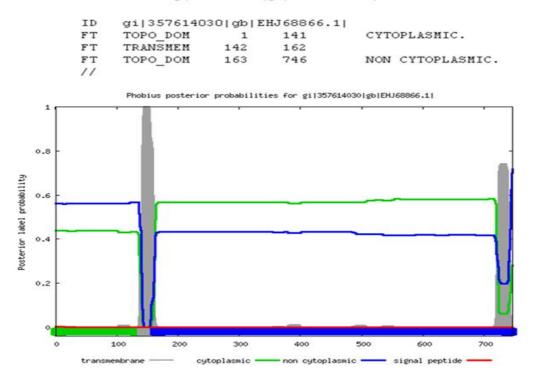
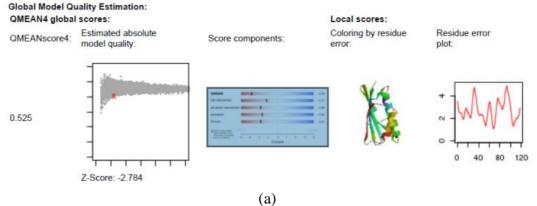


Fig6 Transmembrane region as predicted in Phobius

Transmembrane region was predicted from 140-162 [Table 1] accounting for a stretch of aproximatly 20 amino acids.

DATABASE	LOCATION
SMART	140-162
PSORT	142-158
TMHMM	140-162
Phobius	142-162

Table 1: Showing location of transmembrane domain.


Alpha ANH domain [38] [39] is also predicted as a functional domain. This is a subfamily of Adenine nucleotide alpha hydrolases superfamily [Table 2]. Adeninosine nucleotide alpha hydrolases superfamily includes N type ATPase and ATP sulphurylases. It forms an alpha/beta/alpha fold which binds to Adenosine group. This subfamily of proteins is predicted to bind ATP. This domain has a strongly conserved motif SGGKD at the N terminus.[40]

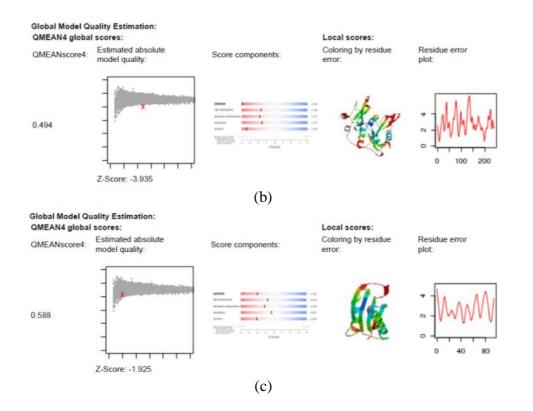

Alpha_ANH DOMAIN	LOCATION
Alpha_ANN_like_IV	1-200 (cd01994)
eu_AANH_C_1	365-440(cd06155,)
eu_AANH_C_2	480-580(cd06156)
YjgF_YER057c_UK	365-440,480-580

Table 2: Showing	location of ATP	binding domain
------------------	-----------------	----------------

3.2 Protein 3D Structure Prediction

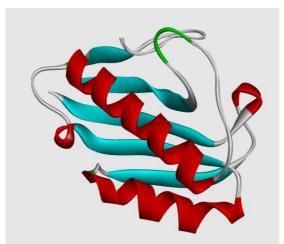

We used swiss model and modeller for constructing 3D structure of hypothetical protein KGM_05782 that utilize 3rk1 protein file as templates to model structure. The resultant structure was evaluated using QMEAN Z-score.

Fig7: Results of various parameters for Model-1 (a), Model-2 (b) and Model-3 (c) used for secondary structure predication.

Three models were predicted with QMEAN Z-score as -2.784, -3.935 and -1.925 respectively for Model-1, Model-2 and Model-3. The protein's secondary structure was visualized using pymol molecular viewer and found to have 2 major helices and five beta sheets.

Fig8: Structure visualization of the predicted 3D structure of the hypothetical protein KGM_05782 of Danaus plexippus in Discovery Studio

4 Discussion and Conclusion

Computational sequence analysis and prediction of unknown or uncharacterized proteins is a key for genome annotation. In this study we identified 9000+ hypothetical proteins. Out of this one protein named KGM_05782 was subject to detailed studies and explored using various online/offline softwares and tools freely used for academics. Our considered Protein sequence contains 3.8% proline residues and studies have suggests that proline can be used as an energy substrate for flight muscle during distant migrations. [42][43][44]

Transmembrane domain predicted as common domain in hypothetical protein of Danaus plexippus by using various tools/software's such as SMART, THMM, PSORT and Phobius. Transmembrane region was predicted from 140 -162 that explained it to be a membrane bound protein. It is predicted that it may be a part of some important cascade and work as channelizing protein. The YigF/YER057c/UK family of proteins is found highly conserved and currently lacks a consensus biochemical function. In a earlier work on Salmonella enteric, strains lacking yigF has led to a working model in which YjgF functions to remove potentially toxic secondary products of cellular enzymes that can be correlated with its feeding ability on milkyweeds having cardenolide content.[45] This also indicates the highly conserved YjgF/YER057c/UK114 family of proteins responsible for the survival of this weed feeding group. We also predict some other sites and domains which are weakly characterized as Alpha ANH domain and ligand binding sites. [Table 3]

PREDICTED SITES	LOCATION
Ligand Binding site	8,12
Homotrimer interaction site	380-580
Putative active site	413-570
ATP_bind_4	1-236

Table 3 Concluded sites in hypothetical protein

Nevertheless, these predicted data provide a powerful framework for furthur underderstanding of genomes through iterative function assignments and annotations.

References

[1] http://danaus.genomeprojectsolutions-databases.com/

- [2] S. Zhan et al., "The monarch butterfly genome yields insights into longdistance migration," *Cell.* vol.147, no.5, pp. 1171–1185, Nov.2011.
- [3] A. Hsiao, and M.D. Kuo, "High-throughput Biology in the Postgenomic Era," *J Vasc Interv Radiol*, vol.17, pp.1077–1085, 2006.
- [4] http://genomics.energy.gov/
- [5] http://eol.org/pages/2682739/hierarchy_entries/39081589/overview
- [6] A.F Yakunin et al.,"Structural proteomics: a tool for genome annotation", *Curr Opin Chem Bio.*, vol.8, no.1, pp. 42-8, Feb.2004.
- [7] H.A. Watkins and E.N. Baker "Structural and Functional Analysis of Rv3214 from Mycobacterium tuberculosis, a Protein with Conflicting Functional Annotations, Leads to Its Characterization as a Phosphatase," *J Bacteriol.*, vol.188,no.10, pp. 3589-3599,May 2006.
- [8] J. M. Johnston et al.," Crystal Structure of a Putative Methyltransferase from Mycobacterium tuberculosis: Misannotation of a Genome Clarified by Protein Structural Analysis," *J Bacteriol.*, vol.185, no.14, pp.4057–4065. July 2003.
- [9] http://www.ncbi.nlm.nih.gov/
- [10] A. Ikai," Thermostability and aliphatic index of globular proteins," *J Biochem.*, vol.88, no.6, pp.1895-1898.Dec.1980.
- [11] SC.Gill and PH H.Von," Calculation of protein extinction coefficients from amino acid sequence data," *Anal Biochem.*, vol.182,no. 2,pp. 319-26,Nov.1989
- [12] K.Guruprasad, BV. Reddy, and MW. Pandit," Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence," *Protein Eng.*, vol.4, no.2, pp. 155-61, Dec. 1990.
- [13] J.Kyte and R.F.Doolottle," A simple method for displaying the hydropathic character of a protein," *J Mol Biol.*, vol. 157,no. 1,pp. 105-132,May 1982.
- [14] http://us.expasy.org/tools/protparam.html.
- [15] A. Bateman et al.," The Pfam Protein Families Database," Nucleic Acids Res., vol.28,no.1,pp. 263–266, Jan. 2000.
- [16] http://pfam.sanger.ac.uk/.
- [17] http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi/.
- [18] A.M.bauer et al.," CDD: a Conserved Domain Database for the functional annotation of proteins," *Nucleic Acids Res.*, vol.39, pp.D225-D229, Jan.2011.
- [19] E.M. Zdobnov and R. Apweiler," InterProScan--an integration platform for the signature-recognition methods in InterPro," *Bioinformatics*, vol. 17, no.9, pp. 847-8, Sept. 2001.
- [20] E. Quevillon et al.," InterProScan: protein domains identifier," Nucleic Acids Res., vol.33, no. 2, pp. W116-W120, Mar. 2005
- [21] http://smart.embl-heidelberg.de/smart/set_mode.cgi?
- [22] I.Letunic et al.,"SMART 5: domains in the context of genomes and networks," *Nucleic Acids Res.* vol.34, pp.D257-D260, Jan.2006.
- [23] http://www.cbs.dtu.dk/services/TMHMM/
- [24] A. Krogh et al.," Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes," *J Mol Biol.*, vol. 305, no.3, pp.567-80, Jan. 2001.

- [25] http://psort.hgc.jp/form.html
- [26] K. Nakai and P. Horton," PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization," *Trends Biochem Sci.*, vol. 24, no. 1, pp.34-36, Jan.1999.
- [27] http://phobius.sbc.su.se/
- [28] http://www.ebi.ac.uk/Tools/pfa/phobius/
- [29] L. Käll, A. Krogh, and E.L.Sonnhammer," A combined transmembrane topology and signal peptide prediction method, "*J Mol Biol.*, vol.338, no. 5, pp. 1027-1036, May2004.
- [30] K. Arnold et al.," The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling," *Bioinformatics*, vol. 22,pp. 195-201,2006
- [31] N. Guex, and MC. Peitsch," SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling," *Electrophoresis*, vol.18, no. 15, pp.2714-23. Dec. 1997.
- [32] T. Schwede et al.," SWISS-MODEL: an automated protein homologymodeling server," *Nucleic Acids Res.*, vol.31, no. 13, pp. 3381-3385,2003.
- [33] http://www.ebi.ac.uk/pdbsum/
- [34] RA. Laskowski," PDBsum: summaries and analyses of PDB structures," *Nucleic Acids Res.*, vol.29, no. 1, pp. 221-222, Jan. 2001.
- [35] http://salilab.org/modeller/
- [36] A. Šali and T. L. Blundell," Comparative protein modelling by satisfaction of spatial restraints," *J. Mol. Biol. vol.* 234, pp. 779-815, 1993.
- [37] http://spdbv.vital-it.ch/
- [38] http://www.pymol.org/
- [39] P. Bork and E.V. Koonin," A P-loop-like motif in a widespread ATP pyrophosphatase domain: implications for the evolution of sequence motifs and enzyme activity," *Proteins*, vol. 20, no. 4, pp. 347-355, Dec. 1994.
- [40] L.Aravind , V. Anantharaman ,and E.V. Koonin," Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA," *Proteins*, vol. 48, no. 1,pp. 1-14, Jul. 2002
- [41] E. Mistiniene et al.," Oligomeric assembly and ligand binding of the members of protein family YER057c/YIL051c/YJGF," *Bioconjug. Chem.*, vol. 14, no. 6, pp. 1243-1252, Nov.2003.
- [42] Scaraffia PY, Wells MA., "Proline can be utilized as an energy substrate during flight of Aedes aegypti females. "J Insect Physiol. 2003 Jun;49(6):591-601 PMID: 12804719
- [43] Kay BK, Williamson MP, Sudol M., "The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. "FASEB J. 2000 Feb;14(2):231-41. PMID : 10657980
- [44] Micheu S, Crailsheim K, Leonhard B. "Importance of proline and other amino acids during honeybee flight--Apis mellifera carnica POLLMANN). "Amino Acids. 2000;18(2):157-75. PMID: 10817408

[45] Jennifer A. Lambrecht,1 Beth Ann Browne, and Diana M. Downs, "Members of the YjgF/YER057c/UK114 Family of Proteins Inhibit Phosphoribosylamine Synthesis in Vitro "J Biol Chem. 2010 November 5; 285(45): 34401–34407. doi: 10.1074/jbc.M110.160515 PMC: 2966054