
International Journal of Information Sciences and Application.
ISSN 0974-2255 Volume 5, Number 1 (2013), pp. 1-10
© International Research Publication House
http://www.irphouse.com

Web Services Stepping Ahead

Shweta Roy1 and Dr Ranjit Singh2

1Department of Information Technology,
2Department of Electronics Communications Engineering,

Ajay Kumar Garg Engineering College, 27 Km Stone, NH-24,
P.O. Adhyatmic Nagar, Ghaziabad 201009 UP India

1sguddr@gmail.com, 2ranjit.2000@gmail.com 9868 041 558

Abstract

This paper presents a short introduction to web services. The current
emphasis on Service-Oriented Architectures has put the spotlight on web
services, but it's easy to get lost in all the information being bandied
about. Web services extend the World Wide Web infrastructure to
provide the means for software to connect to other software
applications. Applications access Web services via Web protocols and
data formats without worrying about how each Web service is
implemented. Web services combine the best aspects of component-
based development.

Keywords: Service oriented architecture, Web Services, Web protocols,
Web Service Description Language

INTRODUCTION
Information available on website is intended for humans to access directly but
information available through web services are meant for software to access
despite the fact that the humans may be using it. Even though web services
rely heavily on existing web technologies they do not have direct relationship
with HTML and web browsers.
 A web service is a kind of software that is accessible on the Internet. It
makes use of the XML messaging system and offers an easy to understand,
interface for the end users.
 There are lots of buzz about web services now-a- days and companies are
using them for enterprise applications. To put it simply, it is another

2 Shweta Roy and Dr Ranjit Singh

distributed computing technology like CORBA and RMI. They allow us
creation of client server applications [7].
 For example let us suppose a database with up-to-date weather information
is kept in the server located at UK. It can be made available to anyone in the
world through web services. This information can be published through web
services and given the ZIP code. It will thus provide the information for that
ZIP code.
 Client who wants to access weather information would contact the weather
web service and send the service request. The server will give service response
which will give the information of following Zip Code.

Figure 1

 It can be done with other distributed technologies also like RMI, CORBA,
EJBS etc but web services have some advantages over them.
 Web services are platform independent and language-independent. Both

client programs may be coded in C++ and running on Windows while
web services may be coded in java and running on Linux.

 Most web services are using HTTP for transmitting messages (service
request and response messages). When we are making internet based
applications, it becomes easy to manage through firewalls.

 But where there is boon there is some bane also. Platform independence
and dependency on XML incurs overhead which is not present in binary
coding. Web sevices are not so versatile also till now as other distributed
technologies.

 Since, Web services are loosely coupled distributed system; this makes it
most fit for internet applications.

Web Services Stepping Ahead 3

Figure 2

BASICS OF HOW TO INVOKE A WEB SERVICE.
 Clients do not have information about where to find the web service

which will give the respective weather information. First step is to
discover the service which meets our requirements which is done through
sending request to discovery service which is again a web service (yellow
pages).

 Discovery service will reply where to find the service which will meet
our requirements.

 Now although we know the location but do not know how to invoke the
web services which is done actually through WSDL (Web Service
Description Language). Web service replies in WSDL language.

 Now when we know where web service is and how to invoke it, service
request is sent through language called SOAP (simple object access
protocol).

 Web service gives SOAP reply to corresponding SOAP response.

4 Shweta Roy and Dr Ranjit Singh

WEB SERVICE ARCHITECTURE

 Service process- This part of architecture involves lots of web services.
Discovery process is also part of it through which we find web service
according to our requirements.

 Service description: One of the most interesting features is that web
services are self-describing. It is written in WSDL which says what the
web service is for, and how to invoke it.

 Service invocation: It is done through SOAP request and response
messages which is passed between client and server.

 Finally to transmit the message HTTP (hyper text transfer protocol) is
used.

Figure 3

Web Services Stepping Ahead 5

Figure 4

WEB SERVICES CHALLENGES
There are many challenges emerging with this new technology. The technology
is itself in very nascent stage so during the process of evolution, many a
milestone has been set.
 Main challenge involved with web services is how to choose best web
services available amongst so many web services performing similar
functionality and how to automate the execution. A planning system can be
thought of as the one performing user-defined goals [8].
 Services are made up of operations which can be seen as actions that a
planning system can perform on the world. However from the planning point
of view, these actions are not fully specified. The problem of planning for
web services is further complicated by the fact that the information describing
the domain is distributed, heterogeneous and incomplete [5].
 Heterogeneity is a problem both in terms of the data that services input
and output and the description of the services themselves. There is no common
high level data model between services. Two logically equivalent actions may
be called differently in different services and require different patterns of
interactions prior to their execution.
 For example, one might need to perform a “login” action followed by
“getCatalogue” action in one service before executing “purchaseItem”, while
another service the logically equivalent action “submit purchase order” can be
executed without executing any prior login procedure.
 Our approach to planning of web services is pragmatic one based on
information that is currently available in service interface definitions. An
attempt to perform planning is based solely on information available in the
service descriptions.
 The set of operations provided by a service is available in WSDL
description.

6 Shweta Roy and Dr Ranjit Singh

 The i/o signature tells what type of document needs to be provided in
order to execute it as well as types of document that will be returned upon
execution.
 It also gives description of the possible combination of the service that is
order of execution.
 But this gives only static description of the functionality of the service
while the service process definitions provide procedural information to the
planner.
 Service classification information is found in UDDI service registries in
which services are classified according to IT industry segment, provider and
location. Meta data becomes useful to the planner when searching for relevant
services and inferring similarity between them.
 In order to fulfil the goal of automated planning of web services [4], the
work has been divided into two parts that is work on type matching algorithm
capable of discovering semantic equivalence between similar data type, and a
service composition algorithm for use in composing service to achieve
information goals.

TYPE MATCHING
The service is composed from its operation definitions. For this, we need to
be able in some way to match different data-types such as goal with various
service output. In this, we need to tackle the problem of data heterogeneity
which is to decide if under some mapping the data described by one data type
can be substituted for that described by another. Thus if we take output
produced by one service, map it and use it as input to another service [3].
 The data type has set of values that can be considered as representing
different states of the world. For example when receiving message of type
“person” with the name equal to “Mohan” and age equal to”21” we can
interpret that there exists a person name Mohan and age 21. If another
message of type “university student” with name and age as before, we can
interpret it as saying that there exists a person Mohan whose age is 21 and he
goes to university. The second message describes a smaller set of possible
worlds than first.
 Now if we need to fulfil a goal of type person then the instance of the
message “university student” can be used to provide the required information.
If however we require an input of type “university student” and have a
message of type “person” the reverse is not possible as we do not know
whether or not the instance to which the message refers is a university student
or a school student and so on. Thus in order to be able to map from one
data type to another we require that the latter describes the superset of
possible output worlds that can be described by the former.
 Now in our algorithm when we compare the goal type t (goal) to a
particular service output type t(out) we require that t(goal)�M t(out), which is
to say that all documents conforming to output type also conform to the goal

Web Services Stepping Ahead 7

type after certain mapping M has been applied to them.
<Weather>
<Temperature type="decimal"/>
<Location type="string"/>
</Weather>
with a restriction that value of field “Location” should be
“Adelaide”, should match against a schema such as:
<DailyWeather>
<LocalConditions>
<AmbientTemperature type="decimal"/>
<Rainfall type="decimal"/>
</LocalConditions>
<Address>
<City type="CityNames"/>
<State type="StateNames"/>
</Address>
</DailyWeather>
where:
<simpleType name="CityNames">
<restriction base="string">
<enumeration value="Adelaide"/>
<enumeration value="Melbourne"/>
<enumeration value="Perth"/>
....
</restriction>
</simpleType>

 This is because the information required by the first can be found from
within the second, i.e. the values for “AmbientTemperature” and “City” in the
second can be mapped to “Temperature” and “Location” in the first. Note also
the fact that the value “Adelaide” (which is a restriction on the field
“Location” in the goal), is one of the possible values of the type “CityNames”
in the output type, i.e. some instances of the output type adhere to the value
restrictions in the goal.

8 Shweta Roy and Dr Ranjit Singh

SERVICE COMPOSITION ALGORITHM
Service composition algorithm is devised to compose and execute service
operation to retrieve desired information. The algorithm takes as input the goal
to be achieved and searches a UDDI directory for all services which are
capable of outputting documents of sufficient similarity to the goal, using the
type matching algorithm described previously [1,2].
 The service interface with the most similar output is selected first. If there
is more than one implementation of that interface, the algorithm will select
one of them based on meta-data values. It then attempts to execute the
particular service operation that produces the desired output. Before doing so,
it must create the required input document. It starts by using the immediately
available information, such as that given in the goal, the local information, and
past input and output documents if they exist.
 If the available information is not sufficient, the algorithm must again
search the outputs of other services, i.e. the procedure calls itself recursively.
Generally, not all of the data required to fill the input document will be
contained in a single source, thus the process repeats on sub-elements of the
input document until a complete document is produced or a search limit is
exceeded. Having generated an input document, the algorithm attempts to
invoke the operation.
 If it does not produce the desired output, the algorithm rolls back certain
decisions made when creating the input and tries again. The heuristic guiding
this search can be based on the confidence the algorithm had in its decision at
each point, i.e. the quality of the match. If after a “reasonable number” of
attempts, the operation still can’t be executed, then the problem may be the
data given as input to the previous (successfully completed) operation.
 Thus the system either tries to re-execute the previous operation with
different inputs, or gives up on the service altogether and searches for a new
way of achieving the goal.
 The search tree created by the above algorithm can be seen as an AND-
OR tree, where the “OR” branches represent different ways of creating an
input, and the “AND” branches represent combinations of service outputs that
together produce an input. Leaves in the tree represent data found to be
available locally. The execution algorithm described above performs a bounded
best-first search through the tree, where the bound sets a limit on the number
of failed execution attempts allowed for completing a given sub-tree. The
execution bound is decremented for each level of decent in the tree.
 This algorithm assumes that all of the operations within each service are
atomic, and that the service to which they belong is stateless i.e. there are no
ordering constraints on the executions of operations within a given service. In
some cases, this assumption may be false, and the exact ordering of operations
may be critical for the correct execution of services. For example a service
might require that a “login” operation is performed prior to executing a
“getStockQuote” operation.

Web Services Stepping Ahead 9

 The algorithm described above would never try to invoke the former
operation and thus would never be able to successfully execute the latter. In
some cases, such information may be available however in the form of service
process descriptions. Such process descriptions may even provide additional
information regarding the flow of data between operations within a service (i.e.
fields in input and output documents that refer to the same value) [6].

CONCLUSION
Web services are in very initial stage of development. Though lot of services
have been developed and are being used, no common platform and standard
exists. W3C web service architecture working group is working towards this
[6], [9].
 Once there is common semantics and ontology for services developed by
different vendors, implementation of type matching and service composition
will become feasible.

REFERENCES

[1] Carman, M., and Serafini, L. 2003. Planning for web services the hard
way. InWorkshop on Service Oriented Computing,International
Symposium on Applications and the Internet (SAINT-2003). IEEE
Computer Society Press.

[2] Carman, M.; Serafini, L.; and Traverso, P. 2003. Web service
composition as planning. In Workshop on Planning for Web Services,
13th International Conference on Automated Planning and Scheduling
(ICAPS 2003). Fellbaum, C., ed. 1998. WordNet: An Electronic Lexical
Database. The MIT Press.

[3] McDermott, D. 2002. Estimated-regression planning for interactions with
web services. In AI Planning Systems Conference.

[4] McIlraith, S., and Son, T. 2002. Adapting golog for composition of
semantic web services. In Proceedings of the Eighth International
Conference on Knowledge Representation and Reasoning (KR2002).
Morgan Kaufmann.

[5] Mecella, M.; Pernici, B.; and Craca, P. 2001. Compatibility of e-services
in a cooperative multi-platform environment.In 2nd VLDB Workshop on
Technologies for e-Services (VLDB-TES 2001). Springer.

[6] Thakkar, S., Knoblock, C. A., Ambite, J. L.; and Shahabi, C. 2002.
Dynamically composing web services from online sources. In Workshop
on Intelligent Service Integration, The Eighteenth National Conference on
Artificial Intelligences(AAAI).

[7] Shweta Roy, Evolution of Middleware Technology and Its Widespread
Applications, AKGEC Journal of Technology, Vol.1, no.1, January 2010,
pp 33-38 (ISSN 0975-9514).

10 Shweta Roy and Dr Ranjit Singh

[8] Shweta Roy & Dr Ranjit Singh, Web Services: Composition and
Integration for Easy Use, , International Journal of Computer Science
and Communication, Vol 2, no.1, March 2011, pp 259-264 (ISSN 0973-
7391)

[9] Shweta Roy, “Neural Network Based Solution for Choice of Best Web
Services” published by Lambert Academic Publication House, Germany ,
2012. ART1 (adaptive resonance network) based neural network has been
used

Shweta Roy obtained B.Sc Engineering in Computer Science and Engineering
from Magadh University, Gaya in 2001.
 Since last six years, she is teaching at Ajay Kumar Garg Engineering
College where, she is an Assistant professor in the Department of Information
Technology. Ms Roy submitted M.Tech Thesis to the Gautam Budh Technical
University in the area of Middleware Web Services.
 She has passion for teaching and has taught a number of courses namely
Computer Networks, Compiler Design, Software Engineering, Automata Theory,
Java Programming and C programming Concepts. Published two research
papers.
 Lambert Academic Publication House, Germany published the book, “Neural
Network Based Solution for Choice of Best Webservices” in 2012 based upon
her MTech thesis.

Dr Ranjit Singh obtained BTech., MTech and Ph.D degrees from the Indian
Institute of Technology, Kanpur in 1969, 1971 and 1976 respectively. He
specialized in the area of Electronic circuits and devices.
 Published large number of technical papers in IETE journals in addition to
in-depth technology-reviews covering emerging trends in Communications and
information technology.
 Since last four and half years, he is teaching at Ajay Kumar Garg
Engineering College where, he is a Professor in the Department of Electronics
& Communications Engineering.
 He has abiding passion for teaching and research. Currently guiding MTech.
and PhD scholars besides supervising BTech projects. He is Life Fellow of the
IETE and attended international conferences held in France, Singapore, USA,
Hong Kong and Nepal. Daily practices advance meditation.

