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Abstract 
 

In a period of continuous change in global business environment, 
organizations, large and small, are finding it increasingly difficult to deal with, 
and adjust to the demands for such change. Simulation is a powerful stool for 
allowing designers imagine new systems and enabling them to both quantify 
and observe behavior. Currently the market offers a variety of simulation 
software packages. Some are less expensive than others. Some are generic and 
can be used in a wide variety of application areas while others are more 
specific. Some have powerful features for modeling while others provide only 
basic features. Modeling approaches and strategies are different for different 
packages. Companies are seeking advice about the desirable features of 
software for manufacturing simulation, depending on the purpose of its use. 
Because of this, the importance of an adequate approach to simulation 
software evaluation and selection is apparent. This paper presents an 
application of Principal Component Analysis for Simulation Software 
Selection.  
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Introduction 
Growing competition in many industries has resulted in a greater emphasis on 
developing and using automated manufacturing systems to improve productivity and 
to reduce costs. Due to the complexity and dynamic behavior of such systems, 
simulation modeling is becoming one of the most popular methods of facilitating their 
design and assessing operating strategies. An increasing need for the use of simulation 
is reflected by a growth in the number of simulation languages and simulators in the 
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software market. When a simulation language is used, the model is developed by 
writing a program using the modeling construct of the language. This approach 
provides flexibility, but it is costly and time consuming. On the other hand, a 
simulator allows the modeling of a specific class of systems by data or graphical 
entry, and with little or no programming. Following a review of previous research in 
simulation software evaluation, an evaluation framework used for the evaluation is 
given.  
 
 
Research in Software Evaluation and Selection 
The starting point for the research was to review previous studies on the evaluation 
and selection of simulation software tools. Although there are many studies that 
describe the use of particular simulation packages or languages, for example, Fan and 
Sackett (1988), Taraman (1986), Bollino (1988) and so on, relatively few comparative 
assessments were found like Abed et al. (1985), Law and Kelton (1991). 
 Some of the evaluations of simulation languages include: a structural and 
performance comparison between SIMSCRIPT II.5 and GPSS V by Scher (1978); an 
efficiency assessment of SIMULA and GPSS for simulating sparse traffic by Atkins 
(1980); and a quantitative comparison between GPSS/H, SLAM and SIMSCRIPT II.5 
by Abed et al. (1985). 
 SLAM, ECSL and HOCUS were used for the comparison of event, entity and 
process-based approaches to modeling and simulating manufacturing systems by 
Ekere and Hannam (1989). Several criteria describing programming features, model 
development characteristics, experimental and reporting features, and commercial and 
technical features were specified. 
 Law and Haider (1989) provided a simulation software survey and comparison on 
the basis of information provided by vendors. Both simulation languages and 
simulators such as FACTOR, MAST, WITNESS, XCELL + and SIMFACTORY II.5 
are included in this study. Instead of commenting on the information presented about 
the software, the authors concluded that there is no simulation package which is 
completely convenient and appropriate for all manufacturing applications. 
 A similar approach to software comparison has been taken by Grant and Weiner 
(1986). They analyzed simulation software products such as BEAM, CINEMA, 
PCModel, SEE WHY and SIMFACTORY II.5, on the basis of information provided 
by the vendors. The authors do not comment on the features provided by the software 
tools. 
 Law and Kelton (1991) described the main characteristics and building blocks of 
AutoMod II, SIMFACTORY II.5, WITNESS and XCELL +, with a limited critical 
comparison based on a few criteria. Similarly, Carrie (1988) presented features of 
GASP, EXPRESS, GENETIK, WITNESS and MAST, but again without an extensive 
comparison. 
 SIMFACTORY II.5, XCELL +, WITNESS were compared by modeling two 
manufacturing systems by Banks et al. (1991). The main results of the comparison 
revealed that SIMFACTORY II.5 and XCELL + did not have robust features, while 
WITNESS had most of them. Such conclusions were obtained on the basis of twenty 
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two criteria. 
 Hlupic and Paul (1999) presented criteria for the evaluation and comparison of 
simulation packages in the manufacturing domain together with their levels of 
importance for the particular purpose of use. However, it is indicated which criteria 
are more important than others, according to the purpose of software use. 
 Tewoldeberhan et al. (2002) proposed a two-phase evaluation and selection 
methodology for simulation software selection. Phase one quickly reduces the long-
list to a short-list of packages. Phase two matches the requirements of the company 
with the features of the simulation package in detail. Different methods are used for a 
detailed evaluation of each package. Simulation software vendors participate in both 
phases. 
 
 
Simulation Software Evaluation Criteria 
The criteria derived can be applied to the evaluation of any general or special purpose 
simulation package. For this study four main groups are defined to develop the 
framework for the evaluation. Features within each group are further classified into 
subcategories, according to their character. Total features within these groups are 210. 
The main categories are: 
 Hardware and software considerations: coding aspects, software compatibility, 
user support, financial & technical features; 
 Modeling capabilities: general features, modeling assistance; 
 Simulation capabilities: visual aspects, efficiency, testability, experimentation 
facilities, statistical facilities; and 
 Input/Output issues: input and output capabilities, analysis capabilities. 
 
 
Principal Component Analysis for Simulation Software Selection 
Principal Component Analysis has been applied to identify the features that are 
common and hence most important in each of 9-groups (PCA can not be applied to 
S/W Compatibility, Experimentation Facilities, Statistical facilities, Analysis 
Capabilities and ) of criteria i.e. Coding Aspects, User Support, Financial & Technical 
Features, General Features, Modeling Assistance, Visual Aspects, Efficiency, 
Testability and I/O Capabilities. The survey for the study was conducted on 20 
automobile manufacturers in North India. Framework in the form of questionnaire 
was presented to automobile industry. From among the 20 automobile manufacturers, 
completed questionnaires were received from 18 companies and no reason was 
offered for non-compliance by the two firms namely Mahindra & Mahindra Ltd. and 
Ultra Motor India Pvt. Ltd., for not participating in the study. A total of 40 usable 
questionnaires were obtained constituting an overall response rate of 90.00 percent. 
Thus the data has been analyzed for 18 automobile manufacturers using 40 
questionnaires and the results have been computed accordingly. 
 A factor explains the correlations among a set of given variables. Factor analysis 
is a multivariate statistical technique in which the whole set of interdependent 
relationship is examined, generally used for data reduction and summarization 
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(Malhotra, 2002, p. 586). In other words, it simplifies the diverse relationships that 
exist between a set of observed variables by explaining some common factors that 
link together the apparently unrelated variables (Dillon and Goldstein, 1984). The 
main purpose of this technique is to condense the information contained in a number 
of original variables into a smaller set of new composite dimensions with a minimum 
loss of information (Joseph, 1995). For conducting Factor Analysis, minimum sample 
size should be atleast four times of the variables taken under consideration (Sen and 
Pattanayak, 2005). As a total of 40 questionnaires are available, the present study 
qualifies the sample size requirement for applying the Factor Analysis on each group 
of criteria.  
 
Adequacy of the Data for Factor Analysis 
For checking the adequacy of the data for Factory Analysis, the various recommended 
techniques are:  

a. Construction of Correlation Coefficient Matrix of Explanatory Variables 
b. Construction of Anti-Image Correlation Matrix 
c. Kaiser-Meyer-Oklin (KMO) Measure of Sampling Adequacy 
d. Bartlett’s Test of Sphericity 

 
Construction of Correlation Coefficient Matrix of Explanatory Variables 
It is a lower triangle matrix showing simple correlations among all possible pairs of 
variables included in the analysis. For the application of factor analysis, it is 
obligatory that the data matrix should have good correlations. If visual inspection 
reveals no substantial number of correlations greater than 0.30, then Factor Analysis 
is probably inappropriate (Hair, 2003, p.99). The Correlation Coefficient Matrix has 
been computed for the data to check the inter-correlation between various variables. 
For the factor analysis to be appropriate, the variables must be correlated. Perusal of 
Table 1 clearly indicates that there are enough correlations indicating the suitability of 
data for application of Factor Analysis. 
 
Anti-Image Correlation Matrix 
It is the matrix of partial correlations among variables. The diagonal contains the 
measures of sampling adequacy for each variable and the off-diagonal elements are 
the partial correlations among variables. If true factors existed in the data, the partial 
correlations would be small (Hair, 2003, p. 99). Present study has also computed 
Anti-Image correlations and found that the partial correlations are very low indicating 
that true factor existed in the data. Table 2 contains the Matrix of Anti-Image 
correlations. 
 
Kaiser-Meyer-Oklin (KMO) Measure of Sampling Adequacy 
It is an index used to examine the appropriateness of factor analysis. High values 
(between 0.5 and 1.0) indicate adequacy of data for the use of Factor Analysis 
(Malhotra, 2002, p. 588). Here, the computed value of KMO statistic is 0.573 
indicating the adequacy of data for Factor Analysis. 
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Bartlett’s Test of Sphericity 
It is a test often used to examine the hypothesis that the variables are uncorrelated in 
the population i.e., population correlation matrix is an identity matrix (Malhotra 2002, 
p. 588). This test finds the overall significance of correlation matrix, and provides the 
statistical probability that the correlation matrix has significant correlations among at 
least some of the variables (Hair, 2003, p. 99). Here, Bartlett’s Test’s Chi-square 
value is 96.661 (approx), Df = 21, significant at 0.000. This significant value indicates 
that correlation coefficient matrix is not an identity matrix. All this ensures the 
adequacy of data for application of Factor Analysis. 

 
Table 1: Correlation Coefficient Matrix of Explanatory Variables. 

 

 

 
 

Table 2: Anti-image Correlation Matrix of Explanatory Variables. 
 

 
 

Correlation Matrixa

1.000 .709 .178 .556 .313 .414 -.169
.709 1.000 .130 .603 .131 .243 -.044
.178 .130 1.000 .605 .294 -.127 -.072
.556 .603 .605 1.000 .459 .231 -.141
.313 .131 .294 .459 1.000 .431 .136
.414 .243 -.127 .231 .431 1.000 -.101

-.169 -.044 -.072 -.141 .136 -.101 1.000
.000 .139 .000 .026 .004 .152

.000 .215 .000 .214 .068 .395

.139 .215 .000 .035 .220 .331

.000 .000 .000 .002 .079 .196

.026 .214 .035 .002 .003 .204

.004 .068 .220 .079 .003 .271

.152 .395 .331 .196 .204 .271

Q2.2.1
Q2.2.2
Q2.2.3
Q2.2.4
Q2.2.5
Q2.2.6
Q2.2.7
Q2.2.1
Q2.2.2
Q2.2.3
Q2.2.4
Q2.2.5
Q2.2.6
Q2.2.7

Correlation

Sig. (1-tailed)

Q2.2.1 Q2.2.2 Q2.2.3 Q2.2.4 Q2.2.5 Q2.2.6 Q2.2.7

Determinant = .062a. 

KMO and Bartlett's Test

.573

96.661
21

.000

Kaiser-Meyer-Olkin Measure of Sampling
Adequacy.

Approx. Chi-Square
df
Sig.

Bartlett's Test of
Sphericity

Anti-image Matrices

.394 -.210 -.028 -.006 -.077 -.119 .114
-.210 .340 .119 -.165 .134 .016 -.121
-.028 .119 .485 -.225 -.038 .180 3.17E-005
-.006 -.165 -.225 .278 -.136 -.029 .096
-.077 .134 -.038 -.136 .546 -.229 -.224
-.119 .016 .180 -.029 -.229 .621 .102
.114 -.121 3.17E-005 .096 -.224 .102 .846
.713a -.575 -.065 -.017 -.167 -.240 .197

-.575 .531a .292 -.535 .310 .034 -.225
-.065 .292 .475a -.613 -.074 .328 4.96E-005
-.017 -.535 -.613 .615a -.350 -.071 .197
-.167 .310 -.074 -.350 .545a -.394 -.329
-.240 .034 .328 -.071 -.394 .589a .141
.197 -.225 4.96E-005 .197 -.329 .141 .247a

Q2.2.1
Q2.2.2
Q2.2.3
Q2.2.4
Q2.2.5
Q2.2.6
Q2.2.7
Q2.2.1
Q2.2.2
Q2.2.3
Q2.2.4
Q2.2.5
Q2.2.6
Q2.2.7

Anti-image Covariance

Anti-image Correlation

Q2.2.1 Q2.2.2 Q2.2.3 Q2.2.4 Q2.2.5 Q2.2.6 Q2.2.7

Measures of Sampling Adequacy(MSA)a. 
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 From the above discussion, the following results are extracted:  
i. Correlation Coefficient Matrix contains enough high correlations. 
ii. Anti-Image Correlation Matrix contains low partial correlations. 
iii. Value of KMO statistic is large. 
iv. Value of Bartlett’s Test of Sphericity is significant. 

 
 Now, after testing the adequacy of data, the set of 7 statements regarding the 
coding aspects of simulation software were subjected to factor analysis. Principal 
Component Analysis (PCA) was used for extraction of factors and the number of 
factors to be retained was on the basis of Latent Root Criterion (Eigen Value 
Criterion). An eigen value represents the amount of variance associated with the 
factor. Thus, only the factors having latent roots or eigen values greater than 1 are 
considered significant; all the factors with latent roots less than 1 are considered 
insignificant and are disregarded (Hair, 2003, p.103). Therefore, factors with eigen 
values more than one should be selected. Table 3 contains the initial eigen values for 
all the components. Perusal of Table 3 indicates that only threee components have 
eigen values greater than unity and total variance accounted for by these three factors 
is 75.300 percent and remaining 24.700 percent was explained by other factors. 

 
 

Table 3: Total Variance Explained by Initial Eigen Values. 
 

 
 

 
 Further, the Component Matrix (without rotation) was constructed as exhibited in 
Table 4. Perusal of Table 4 indicates that there are many variables having loading on 
more than one factor. “Although the unrotated factor matrix indicates the relationship 
between the factors and individual variables, it seldom results in factors that can be 
interpreted, because factors are correlated with many variables” (Malhotra, 2002, p. 
595). The solution to above problem lies in Varimax Rotation.  

 
 
 
 

Total Variance Explained

2.849 40.693 40.693 2.849 40.693 40.693 2.409 34.415 34.415
1.266 18.089 58.782 1.266 18.089 58.782 1.668 23.833 58.248
1.156 16.518 75.300 1.156 16.518 75.300 1.194 17.052 75.300
.926 13.227 88.528
.352 5.022 93.549
.297 4.240 97.789
.155 2.211 100.000

Component
1
2
3
4
5
6
7

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Component Analysis.
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Table 4: Component Matrix (Without Rotation). 
 

 
 
 

 In the next step, the principal factors were orthogonally rotated using Varimax 
Rotation. This method minimizes the number of variables that have high loading on a 
factor and thereby enhancing the interpretability of factors (Sen and Pattanayak, 2005 
and Malhotra, 2002, p. 595). Rotation does not affect the communalities and the 
percentage total variance explained. How ever, the percentage of variance accounted 
for by each factor does change. The variance explained by the rotated factors is 
redistributed by rotation.  
 The factor loadings greater than 0.45 should be retained (ignoring signs) because 
loadings below it are poor (Bhaduri, 2002, Sidhu and Vasudeva, 2005). The Present 
study has also followed the same criterion for factor loadings. The Varimax Rotated 
Factor Loading Matrix has been presented in Table 5.  

 
Table 5: Varimax Rotated Factor Loading Matrix. 

 

 

Component Matrixa

.822 -.265 -.199

.745 -.172 -.291

.482 .798 .026

.870 .324 -.047

.590 .029 .656

.504 -.648 .274
-.162 .069 .723

Q2.2.1
Q2.2.2
Q2.2.3
Q2.2.4
Q2.2.5
Q2.2.6
Q2.2.7

1 2 3
Component

Extraction Method: Principal Component Analysis.
3 components extracted.a. 

Rotated Component Matrixa

.862 .194 -.064

.763 .239 -.170

.004 .930 .067

.584 .720 .070

.391 .295 .735

.715 -.316 .371
-.280 -.052 .688

Q2.2.1
Q2.2.2
Q2.2.3
Q2.2.4
Q2.2.5
Q2.2.6
Q2.2.7

1 2 3
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization

Rotation converged in 6 iterations.a. 
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 Further perusal of Table 5 indicates that variable 2.2.4 had been loaded on two 
factors namely 1 and 2, but on the basis of higher loading it was considered in Factor 
2 only because we know “the process of underlining only the single highest loading as 
significant for each variable is an ideal” (Hair, 2003, p.113). Ultimately, it was found 
that the variables 2.2.1, 2.2.2 and 2.2.6 loaded on Factor 1, the variables 2.2.3 and 
2.2.4 on Factor 2, 2.2.5 and 2.2.7 on Factor 3. 
 
Interpretation of Factors 
A factor loading represents the correlation between variable and its factor. Their signs 
are just like any other correlation coefficient. Like signs mean the variables are 
positively related and opposite signs mean the variables are negatively related. In fact 
the variables carried out in this research study do not reveal any negative related 
factor loading.  
 Now, question arises that how to label these factors? Factors can be labeled 
symbolically as well as descriptively. Symbolic tags are precise and help avoiding 
confusion (Rummel, 1970). Present study has also given symbolic labels to the 
factors. The factors along with their codes and factor loadings are given in Table 6. 

 
 

Table 6: Interpretation of Factors (For Coding Aspects). 
 

Factors Code Factor loading Statement 
F1(Programming support) 2.2.1 0.862 Quality of the support for 

programming 
2.2.2 0.763 Efficiency of Compilation 
2.2.6 0.715 Built-in functions 

F2 (Built-in Logic 
Support) 

2.2.3 0.930 Built-in logic builder 
2.2.4 0.720 Program Generator 

F3 (Help facility) 2.2.5 0.735 Snippet code help 
2.2.7 0.688 Ease of entering text/code 

 Similarly, the PCA have been applied on other groups of criteria and Factors 
identified are summarized as shown in Table below: 

 
 

Table 5.27: Summary of Factors in Different Groups of Features. 
 

S. No. Group of Features Features 
1. Coding Aspects Programming Support 

Built-in Logic Support 
Help Facility 

2. User Support Backend Support 
Software Assurance 
Customer Connectivity 
User friendly manuals 
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3. Financial & Technical Features Upgradation Facility 
Costs 
Price 
Ease 

4. General Features Decision Making Capabilities 
Experience 
Ease 

5. Modeling Assistance Help 
Warning Alerts 

6. Visual Aspects Animation 
Customization Facility 
Real-time Animation 

7. Efficiency Adaptability 
Executional Reliability 

8. Testability Debugging 
Display 
Flow Analysis 
Line by line Debugging 

9. I/O Capabilities Quality of output  
Report generation 
Database maintenance 

 
 
Summary and Conclusions 
This paper presents the solution methodology for large organizations for the 
evaluation and selection of simulation software, which are continuously increasing in 
number. Each vendor claims his product to be the best solution for the organization. 
Principal Component Analysis have been applied to solve the problem. It gives a very 
systematic way to select the simulation package satisfying organization’s 
requirements.  
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