
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 7 (2014), pp. 671-676
© International Research Publications House
http://www. irphouse.com

Security Need for Pluggable Applications

Aditya Sengar1 and Shubhangi Bhadoriya2

1Server Technology, Oracle India Pvt. Ltd Bangalore, INDIA
2Alumni Infosys Technologies Ltd Bangalore, INDIA

ABSTRACT

Pluggable applications have been the basis of enterprise development projects
for years. The sole purpose in their life is to get new functionality 'in the field'.
But platform security aspect of these applications has got little attention in
design and implementation. This is largely due to the fact that plug-in are
downloaded from a trusted store and follow good amount of testing before
their release. But in a collaborated environment where partners are involved in
developing plug-ins for application, aforesaid points may not always be true.

Application upgrade always has security concern and in this case concern
becomes especially strong as we download software across the network and
executes it locally as part of our application so we see a need for enabling
application to identify and control its computational resource like never
before.

Rest of this white paper will discuss key points on secure platform design
for a Pluggable application by inheriting java security model.

1. INTRODUCTION
For a typical application functionality freezes during design. Post application delivery
there is no way for developer to add or customize functionality unless some rework is
done for a given module. Pluggable design meets this need by allowing addition or up
gradation of modules without breaking existing code base.

“Functionality will emerge when required”
 Plug-in is a piece of code that enables application to do something which it
couldn't do by itself. In order to support a desired functionality all application
administrators have to do is to download and deploy a plug-in for it.
 This style of development has manifold advantages,

 On one hand it gives application extensibility to plug-in creator thereby
reducing plug-in development time on the other it supports parallel
development of plug-ins which can dynamically add new features to
application.

672 Aditya Sengar and Shubhangi Bhadoriya

 Likewise reduce core application size and increase flexibility in feature
customization.

 Plug-in simply provides one functionality hence plug-in developer has single
focus.

2. INHERITING JAVA SECURITY MODEL
Java security architecture has ability to grant code with varying degrees of trust and
different levels of access to the system. In addition it provides a safe and secure
platform for developing and running applications by,

 Inbuilt safety features (like type safety, byte-code verifier, class loader,
garbage collector) that leads to more robust code and prevents hostile code
from corrupting runtime.

 Fundamental system security features (like protection domain, access control,
authorization, security manager) to distinguish unsafe and sensitive operations.
This prevents malicious code from interfering with benevolent code.

 Web-based security support (user authentication, code signing, and secure
communication protocols such as SSL) for improving trust between two
cooperating application.

3. AUTHENTICATING PLUG-IN

“Application must trust plug-in before absorbing it in”
 Authentication is a process of identity verification. The participating entity has to
provide some proof of identity that system can understand. Three entities involved in
plug-in deployment are the plug-in store, user and plug-in itself so to complete
authentication we need three levels of check.

3.1 Form based Authentication is used inside application for user authentication
needs

 A user comes to Login page of application (or gets redirected here on timeout
etc).

 The application web server presents its certificate to the browser.
 The JRE verifies the application's server certificate.
 If verification is successful, user enters Id and password to the server.
 Login module gets a salt, sends hash string created using Id, password and

salt.
 The server verifies this hash against the stored hash.
 If the verification is successful, the user is allowed to Login to application.

3.2 Certificate based mutual authentication is used between Online plug-in store
and application (In-app or local plug-in store can be considered as trusted)

 Application user requests access to a plug-in jar file from online store.
 Plug-in store server presents its certificate to the application.

Security Need for Pluggable Applications 673

 The application verifies the server’s certificate.
 If successful, the application sends its certificate to the plug-in store.
 The plug-in store server verifies the application's credentials.
 If successful, the server grants access to the plug-in binary requested by the

application.

3.3 We need to verify origin of plug-in binary and make sure that it’s not altered
during network transmission

 The Plug-in vendor puts digital signature inside the plug-in binary.
 Plug-in store generate hash for this binary and encrypt it with its private key.
 Application downloads plug-in binary and hash value.
 Application decrypts this signed hash with plug-in stores public key
 Application compares this hash with the one generated from plug-in binary.
 If successful, application concludes that it received the correct binary.

 Once authentication is successful, plug-in code validations like structure,
semantics, metadata, closure etc are performed on success application imports vendor
certificate issued by CA.

4. ENSURING RUNTIME SECURITY

“Principal responsibilities of a application is availability”
 Availability is the most basic but most vital service metric. It entirely depends on
computational resources. In the traditional security scheme, once some software got
access to our system, it had full reign. If it was malicious, it can do a great deal of
damage if there are no restrictions placed on it by the run-time environment. In
similar lines the installed plug-in will compete for limited system resources like
memory, disk-space, processor with other plug-ins and also with core application.
 In an unprotected environment compromised plug-in (plug-in with vulnerabilities)
may deny legitimate use of system resource by keep on requesting system resources
without ever releasing them back in other words it can hijack these resources to bring
down application or other plug-in.

4.1 Co-existence is achieved only by fair division of resources

“Conflict doesn't occur as long as plug-ins stays out of the way of each other”
 Plug-ins resource references should be partitioned so that garbage collector

can free clusters of inter-related objects when they are no longer referenced
from the application or plug-ins.

 Similarly, Class memory should be reclaimed by the garbage collector when it
finds clusters of inter-related Class instances with no incoming Class
references from either plug-in or application.

 In Addition Database objects coming with plug-ins must be created in separate
schema (for each plug-in). On one hand it will simplify design and
deployment/ undeployment of plug-ins on the other it will secure (isolate) one

674 Aditya Sengar and Shubhangi Bhadoriya

plug-in objects from getting altered by other.
 Our application loads each plug-in in a new custom class loader and release

reference of this class loader once plug-in is uninstalled. Putting our own
classloader gave us an advantage of counting perm space and restricting
specific classes from being loaded.

4.2 Putting plug-in security policy in place
We needed a comprehensive set of policies and permissions those can allow
application to administer plug-ins with fine-grained access to security-sensitive
resources. We come up with set of plug-in security policies that constraints on
behavior of plug-in and hence designed to eliminate exploitation of computational
resources.
 We inherited java policies as they are extremely granular and we could select set
of a different policy per plug-in to differentiate between plug-ins. We can modify
these policies on the fly without requiring developer to modify the application code.
As plug-ins should not halt VM we controlled exitVM property from our custom
Security manager. Here is a sample policy set for one plug-in.

grant signedBy "samplePlugin"
{
permission java.util.PropertyPermission "${application.root}", "read";
permission java.io.FilePermission "${key.store.path}", "read ";
permission java.io.FilePermission "${log.dir}", "read, write, delete";
permission java.lang.RuntimePermission "accessClassInPackage.sun.io";
permission java.lang.FilePermission "${this.root}”, “read,write,delete ";
}

 Because the Java API always checks with the security manager before it performs
a potentially unsafe action, our application will not perform any action forbidden
under the security policy established by the security manager. If the security manager
forbids an action, application will throw a meaningful exception.
 The policy enforcement can be done using plug-in vendor public key certificate
that we import on a successful authentication. We used signedBy alias to identify set
of policies for a plug-in.

4.3 Sandboxing plug-in environment

“Application must identify and control consumption on all its resource to ensure its
services to plug-ins when needed”

 The essence of the our sandbox model is that core application code is trusted to
have full access to vital system resources while plug-in code is not trusted and can
access only the limited resources provided inside the sandbox
 Plug-ins job execution happens in a different thread for sandbox environment
using Security Manager limited by set of policies. This allows us to define and limit
what a plug-in can do in our environment.
 PluginExecutionEnvironment< PluginCallResult<String>> env
 = new PluginExecutionEnvironment< PluginCallResult<String>>()

Security Need for Pluggable Applications 675

 {
 public Object run()
 {
 /* untrusted code running with current plugin policies */
 return result;
 }
 };

PluginContext context = new PluginContext(plugin);
context.setRunConcurrent(true);
 context.setMaxThreadCount(5);
 context.setMaximumRunTime(10, TimeUnit.SECONDS);
 service.invoke(env, context);

 No Direct resource/ run time access (like Class loader, Thread, Reflection, Socket
and File Streams) for plug-in code (restricted by policies), it must use application API
to do so. In addition application share guarded object with plug-in if needed. Such an
implementation abstracts plug-in from handling low level streams and secures
application from DoS attack.
FileInputStream fis = new FileInputStream("vendor1.config");
 Guard guard = new PropertyPermission("vendor1", "read");
 GuardedObject go = new GuardedObject(fis, guard);
In plug-in code,
 FileInputStream fis = (FileInputStream) go.getObject();

 Our plug-in execution environment is created using a custom class loader.
 PluginClassLoader pcl = new PluginClassLoader();
 pcl.setPermMemoryLimit(10*1024)
 pcl.setRestrictPackage("java.*")

 We can still have fully trusted plug-ins which will run outside sandbox but
resource partitioning will still be applicable for them.

4.4 Configuration Isolation

“Compromised plug-in may alter application or other plug-in configuration for
malicious purpose”

 Keeping default permissions for configuration files make them vulnerable for
unauthorized access. Any malicious change in configuration files may affect boot
process for application or other plug-in. In our proposed design application creates a
hierarchy of directories to store its own configuration information. In addition each
plug-in also has a private directory to store its configuration information. Protections
are cumulative across these directories. If the policies shows that plug-in have
permission to access the resource, system will allow it to access (unless plug-in has
been black listed from accessing the files).
 Directory hierarchy will be like,

676 Aditya Sengar and Shubhangi Bhadoriya

 Application (only) writable configuration
 Application readable (by plug-ins) configuration
 Plug-in (self) writable configuration
 Plug-in (other) readable configuration

 In this case only application will have write access to its configuration files. Plug-
ins on the other hand can edit their own configuration and if require can read from
other application or other plug-ins configuration.

5. CONCLUSIONS
Pluggable applications are security-sensitive as they download remote code and run it
locally as part of application. Our proposed design made it possible to build security
measures into applications to minimize the likelihood that compromised code can
manipulate application for malicious purpose. This is done by establish an additional
layer of defense around system resources; In addition we partitioned our system
resources to avoid any conflict among downloaded plug-ins.
 These security measures ensure that we don't need to figure out what code we can
and can't trust. The application itself prevents any malicious or buggy code that we
invite into our application from doing any damage hence giving us confidence to
welcome code from any partner or 3rd party developer.

6. REFERENCES

[1] Java SE Documentation ‘Evolving the SandboxModel’
http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-
spec.doc1.html#18314

