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Abstract 
 
Conductance based detail biological models of neurons are able to 
predict various forms of spiking patterns with great accuracy, but the 
computational resources required to simulate large network of such 
neurons are still incomprehensible. As an alternative various simplified 
spiking models of neurons have been proposed. These models achieve 
computational efficiency through dynamical system techniques such as 
linearization, bifurcation analysis etc. Although, these simplifications 
have enabled researchers with large scale network simulations, but 
they require multiple parameters to be fitted and optimized for specific 
simulation requirements such as spiking behavior, site of action 
potential initiation etc. 
It is known that cortical pyramidal neurons are independently capable 
of generating action potential from various segments of the cell 
structure such as the soma, apical and basal dendrites, axon hillock, 
axon initial segment etc. These action potentials interact with each 
other due to antidromic and orthodromic propagation and may affect 
the overall cortical dynamics. Furthermore, the Axon Initial Segment 
was shown as the preferred site of action potential initiation. 
The result presented in this study focuses on the analysis, fitting and 
prediction of spikes generated during Action Potential Initiation at 
Axon Initial Segment (AIS). The Adaptive Exponential Integrate and 
Fire (AdEx) model was implemented for the purpose in the NEURON 
simulator and fitted to a biologically accurate neuron model. The study 
also verifies the shape of individual fitted action potential generated at 
the AIS and modifies the generic model for more efficient simulation. 
 
Keywords: Neuron, Action Potential, Axon Initial Segment, Spiking 
Patterns, Spiking Neuron Model. 



Subhasish Ghosh 

 

460

1. Introduction 
Brette (2005) described the Adaptive exponential integrate-and-fire model as an 
effective description of neuronal activity. In their study, they introduced a two-
dimensional integrate-and-fire model by combining exponential spike initiation with 
sub-threshold and spike triggered adaptation. Further, they investigated methods of 
model parameter estimation by applying simple electrophysiological protocols to 
detailed conductance based models. 

It is known that (Colbert, 1996; Mainen et al, 1995;Milojkovic et al, 2005; Stuart et 
al, 1997a, b) cortical pyramidal neurons are independently capable of generating action 
potential from various sections of the cell structure such as the soma, apical and basal 
dendrites, axon hillock, axon initial segment etc. Which of these sections generate the 
Action Potential first and how they interact with each other due to antidromic and 
orthodromic propagation may affect the overall cortical dynamics.Later, it was shown 
that the preferred site of Action Potential initiationis the Axon Initial Segment (Shu et 
al, 2007). 

In this study we implemented the Adaptive Exponential Integrate and Fire model in 
the NEURON Simulator, estimated its parameters to describe a reference neuron and 
in the process optimized the implementation for more efficient simulation. Further, we 
also verified the spike initiation dynamics of the implemented model for action 
potential initiation at the Axon Initial Segment. 

 
2. Model Methods 
2.1 Reference Data Generation 
The reference model was run using NEURON 7.3 (Hines, 1997) and was based on the 
multi-compartmental model of the full dendritic and somatic structure of a layer 5 
cortical pyramidal cell (Mainen, 1996). All simulations were carried out onan Intel I5 
based laptop running at 2.5GHz with 4 GB DDR3 SDRAM. 

 

 
 

Fig. 1: Reference data generation at Axon Initial Segment. 
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To generate the reference data a 2nA Heaviside Current Clamp protocol was 
applied to the seventh segment (0.7) of the AIS. The data was recorded for 1000ms 
with temporal resolution of 0.005ms( 

Fig. 1). As can be seen, a regular spiking pattern was generated from the current 
clamp experiment. Other spiking patterns were also observed by varying the stimulus. 
During the initial part of the simulation from 0 to 50ms, variations in the generated 
data were observed, but this eventually settled down from 50ms onwards. The inter-
spike interval (ISI) was measure and observed to decrease gradually, indicating spike 
adaptation. 

 
2.2 Implementing AdEx in NEURON 
The model is described by two differential equations (Brette, 2005): 

େୢ୴
ୢ୲

=  − g୪(V − E୪) + g୪ .∆. e൬
ష
∆

൰ − w + I  
τ౭ୢ୵
ୢ୲

= a(V − E୪) − w  
A POINT_PROCESS wasopted as the primary interface to take advantage of 

NEURON’s NetCon sub-systemand the NET_RECEIVE block was used to 
implements its core state machine (Fig. 2). 
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Fig. 2: V-I characteristics at AIS (left) and AdEx model  

implemented in NEURON (right). 
 

At the start of the simulation, the AdEx model equations are integrated. The 
WATCH statement iterates until the membrane voltage exceeds the spike voltage 
(v_shoot). At that point, a self-event is generated with flag = 1, this marks the 
beginning of the spike. Next, the integration of the model equations is stopped and the 
membrane voltage is set directly to v_max. This continues until v_spikehold time, after 
which a reset is applied. The process continues until simulation time expires. 

 
2.3 Assumptions for Fitting 
Spikes generated by the AdEx model within ±2ms of the reference model, were 
considered fitted. Furthermore, effects of the axial currents and extracellular fluidin the 
reference neuron were ignored.The estimated parameters and the actual parameters 
fitted were allowed to vary up to ±10% of each other. 

 
2.4 Model Parameter Fitting 
The parameters of the AdEx model were determined as per the techniques described by 
Brette (2005). The membrane surface area was determined directly from the neuron 
simulator. The length of the AIS was found to be 40 μm with a diameter of 
0.098601μm. This gave surface area of the membrane to be 1.239E+02 μmଶ.The 
passive membrane properties were also directly determined from the NEURON 
simulator. The membrane capacitance (cm) was found to be 0.7μF/cmଶ. This gave a 
total capacity of 8.673E-01 ρF. The leak conductance was found to be 2.50E-05 S/cmଶ 
giving a total conductance of 3.0976E-05μS .EL directly observed at AIS was found to 
be -70mV. But at this value of EL, the steady state current was nonzero. To measure 
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the actual leak potential, voltage clamp experiment were performed to minimize the 
steady state current. The leak potential measured by this method was -71.34mV. 

To determine the value of ‘a’, the I-V characteristics of AIS was determined using 
a Voltage Clamp Protocol (Fig. 2). The range of voltage chosen was between -70 and -
61 mV–an inflection was observed beyond this range of measurement. The value of 
parameter ‘a’ determined from the slope of the best linear fit to the I-V curve after 
subtracting the slope GL was found to be 1.2469E-02 μS . For verification, ‘a’ 
determined through the equation below was found as 1.3216E-02μS . 

I = (G + a)(V − E)  
 

 
 

Fig. 3: Voltage response of the reference model to a series of  
regularly space current pulses. 

 
To determine the value of spike-triggered adaptation ‘b’ and the adaptation time 

constant  τ୵ , the membrane potential was depolarized to approximately -65mV (using 
constant current injection) and then a periodic series of short current pulses were 
injected (2nA for 5ms at frequency of 20Hz, 10Hz, 33.33Hz and 14.28Hz) to initiate 
spikes (Fig. 3). The value of the adaptation current was then estimated from the 
equation: 

w = −C ୢ
ୢ୲
− G(V − E) + I  

The value of ୢ
ୢ୲

 was estimated from the slope of the membrane depolarization 
when far away from the threshold. The difference between this estimation of ‘w’ and 
sub-threshold adaptation gave the value for the spike-triggered adaptation. The 
approximate value of ‘b’ was found to be -0.0872nA. As expected, this estimation was 
robust.To find the value of τ୵ , different exponential fits were attempted, but in all 
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cases,  τ୵ varied unpredictably. Hence, a trial and error approach was opted to fit this 
value. 

For Saddle-Node bifurcation, the rheobase is well defined (Izhikevich, 2007); 
hence the value of Vth was determined by stimulating the reference neuron with the 
minimum current which could generate a spike (rheobase). A very slow current ramp 
was used to estimate this current. Vth estimated by this method was found to be less 
than -61mV at 0.22nA. 

Fitting the individual action potential with v_spikehold helps to delay enabling the 
exponential integration. This also aids achieving a better fit of the spike train from the 
predicted parameters of the reference model.v_max is fitted when the reference Action 
Potential reaches maximum amplitude whereas v_min is fitted when the Action 
Potential reaches the hyperpolarized values. The values seem to vary during the initial 
50ms, henceforth it settles approximately at 46mV and -74mV respectively. 

When the membrane voltage reaches v_shoot the exponential integration is stopped 
and the membrane voltage set to v_max. It may seem that v_shoot be fit at the lowest 
possible value to stop the integration earliest, but it should be noted that this sudden 
reset is unnatural and distorts the action potential dynamics. Hence, fitting v_shoot is a 
balancing act, where setting it lowest help save computational resources and setting it 
highest preserves natural action potential dynamics, but not too high as that would 
make the integration unstable. 

The value of  ∆ was fixed at 2mV, this was kept constant across the experiment 
(Brette, 2005). 

 
2.5 Performance Measures 
Spikes generated within ±2ms of the reference model were considered a match. With 
this assumption, the spikes generated by the AdEx model were compared with the ones 
generated by the reference model for 2nA, Heaviside Step injection. The coincidence 
factor (Jolivet, 2004) was calculated as: 

Γ = 1 − ା
ଶ

  
Where, M is the percentage of missed spikes (w.r.t ref model) and E is the 

percentage of extra spikes (w.r.t AdEx model)., five spikes are considered missed and 
two spikes are extra. The approximate number of spikes generated by the reference 
model was 168 and that of AdEx model was 164. This gave a Coincidence factor of 
0.979. 
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Fig. 4: Initial 100ms of simulation showing missed and  

extra spikes (left) and fitted individual AP (right) 
 

3. Conclusions 
3.1 Discussion 
Fig. shows the actual model fitting exercise. The Praxis multi-run fitter available in 
NEURON simulator was attempted to be used for optimizing the predicted parameters, 
but did not yield favorable results.  

The parameters used for the fit is shown in the parameter window (Fig. 5). Initially, 
Vth was observed to have more than 20% variation from the predicted values. Possible 
reasons could be due to the axial current or extracellular mechanisms of the multi-
compartment reference neuron. To circumvent the issue, a series capacity was added to 
the membrane capacitance. Henceforth, all parameters were within 6-10% of the 
predicted values. 

Within 1000ms of simulation, approximately 3% spikes were missed and 2% 
spikes were extra, which yields a coincidence factor (Jolivet, 2004)of Γ = 0.979 (Fig. 
4).The voltage traces are also almost indistinguishable for individual Action Potential 
shape in the sub-threshold region. Some variations are observed in the super-threshold 
region. 

The time evolution of the adaptation current is also shown in the 
Fig. . The growth of the adaptation current was not pure exponential. An 

exponential was attempted to be fit into this, but the adaptation time constant 
 τ୵yielded large variations (~20-500ms) shows the shape of the spike generated from 
the AdEx model. Some of the fitted parameters are mentioned. When v_shoot is 
reached, the exponential integration is stopped and voltage set to v_max. After v_max 
is reached, the spike still keeps growing at a much slower pace. This is due to the 
passive properties of the model. But, the computational resources used to integrate 
these linear parameters are much less when compared to the stiff exponential 
integration. The voltage traces are also almost indistinguishable for individual Action 
Potential shape in the sub-threshold region. Some variations are observed in the super-
threshold region. 
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3.2 Findings 
The AdEx Exponential is too stiff for NEURON running on conventional PC. 
Unpredictable overshoot of spikes and numerical instabilities were observed. 
v_spikehold and stop variable were introduced to circumvent the issue. 

 

 
 

Fig. 5: Fitted AdEx model. 
 

The predicted parameters did not achieve a very good fit at the AIS, but adding a 
capacity in series to the membrane capacity, gave a coincidence factor of more than 
0.97 within 10% of the predicted parameters.Good fit for individual action potential 
shape was achieved with the data generated at the AIS, even without the series 
capacity. 
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