
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 16 (2014), pp. 1653-1659
© International Research Publications House
http://www. irphouse.com

Dynamic Estimation of Intermediate Fragment Size in a
Distributed Database Query

Parnika bhat1, Rajinder Singh Virk Student2

1,2Department of Computer Science

Guru Nanak Dev University

Abstract

Distributed database is a collection of databases that are distributed over
various nodes and are logically interconnected by a communication network.
In distributed database system the objective of Query Optimization is to
execute the query in minimum time. That is the total cost of processing a
query must be minimum, for efficient working of distributed database. Total
cost involves I/O cost, CPU cost, Communication cost. Distributed Query
Optimization divides the relations in to fragments and allocates it to different
nodes. Query is divided into sub queries and then sub query allocation is
performed optimally. Cost depends on the size of intermediate fragments,
reallocation of fragments and communication speed in transferring fragments
from one node to another. Query optimization can estimate the size of
intermediate fragments in two ways: static and dynamic. In static case fixed or
predetermined set of values are given as input file and in case of dynamic
query optimization it’s the code that generate the size of intermediate
fragments. In the proposed work i will be using an existing simulator DQO
(Dynamic Query Optimizer) which stochastically optimize process of
subquery allocation to different nodes of distributed database. In this work a
new component will be augmented that will estimate the size of intermediate
fragments dynamically.

Index Terms— Distributed Databases, Query Optimization, Fragmentation,
Genetic Algorithms, Total Cost, Communication Cost

INTRODUCTION
A database is an organized collection of data. This data is managed by special
software known as Database Management System (DBMS). DBMS is responsible for
querying, updating, defining the data. Distributed Database Systems have been

1654 Parnika bhat, Rajinder Singh Virk Student

developed to meet the increase in amount of data and distributed nature of
organizations in distributed enterprises. A distributed database is a collection of
databases that can be stored at different computer network sites. It is under the control
of a central database management system (DBMS).
 In distributed databases query processing is of important concern. Data retrieval
from different sites in a distributed database is called distributed query processing.
Query processing is much more difficult in distributed environment than in
centralized environment because a large number of parameters affect the performance
of distributed queries, relations may be fragmented and/or replicated, and considering
many sites to access, query response time may become very high.
 In distributed databases as databases are located at geographically different
locations, so a simple query that needs to access databases from various locations can
be decomposed into sub queries. Sequencing of those sub queries is an important
issue in distributed databases. Sequencing of sub queries should be done in such a
way that there is minimum operating cost for processing that query. That is there is
need to optimize the query. So query optimization comes into picture. Query
optimization is to determine the most efficient way to execute a given query by
considering the possible query plans. A query plan is an ordered set of steps used to
access data from database.
 Distributed Database Query Optimization deals with designing the data
distribution (allocation and fragmentation); query Processing and analyzing the
algorithms with a goal to achieve minimum total cost. The cost of a distributed
execution strategy can be expressed with respect to either the total time or the
response time. In query optimization a state space is searched which constitutes all the
access plans that compute the same result to a query. Every access plan is associated
with a certain cost, which is given by a cost function. That access plan is chosen
which is having minimum cost associated with it. Query optimization is an NP hard
problem. [5]
 For query optimization there are various algorithms. Broadly they are classified
into:

 Deterministic Search Algorithms
 Genetic Algorithms
 Randomized Algorithms

 Genetic algorithms generate solutions to optimization problems using techniques
inspired by natural evolution, such as inheritance, mutation, selection, and crossover.
Genetic algorithms propagate their best solutions for a given problem from generation
to generation, improving them further and further [14]
 This algorithm can be easily adapted to query optimization problem where
character strings can be the query execution plans and selection, crossover, and
mutation are applied on those execution plans. In this the fittest solution will be that
has a minimum execution cost associated with it. [2]As it is known that the problem
of finding an optimal plan is NP hard. So a randomized technique can also be used to
create an optimal plan. In a randomized algorithm random choices are made to make a
selection from state space. It moves from state to state with the goal of finding a state

Dynamic Estimation of Intermediate Fragment Size 1655

with the minimum cost. It is simple to implement and faster than deterministic
algorithm. But its disadvantage is it might not find the correct answer at all or it may
take a very long time to find the correct answer.
 The efficiency of a distributed database design depends on cost, response time,
and availability.[3] The cost here include: data storage costs, network communication
costs which include cost of retrieval and update messages, data transmission cost for
intermediate processing, and final responses, and local data processing costs. A Query
execution plan selected for processing the query must minimize the Query Processing
Costs. The Query Processing Cost consists of Local Processing Cost and
Communication Cost. In this work an effort shall be made to minimize the Local
processing Cost as well as Communication cost.

II. DISTRIBUTED COST MODEL
The total time is the sum of all time components, while the response time is the
elapsed time from the initiation to the completion of the query. A general formula for
determining the total time can be specified as follows [2]:
 Total_time = TCPU* #insts + TI/O*#I/Os + TMSG*#msgs + TTR*#bytes

 The first two components measure the local processing time, where TCPU is the
time of a CPU instruction and TI/O is the time of a disk I/O. There are well established
mathematical model to calculate local processing cost and communication cost.

Local Processing Costs
௬ܥܲܮ

 = ∑
௦ ܵ௬ௌ

 (IOCs ∑ ௬ܫ

 ௬ܯ

 + CPCs ∑ ௬ܫ
 ௬ܯ

) (a)

 Where M୰୷

୯ = No. of memory blocks of relations ‘r’ accessed by sub query ‘y’ of
q. IOCs = Input Output Cost Coefficient of site s in milisec per 8k bytes CPCs= CPU
Cost coefficient of site s. So equation (a) represents local processing. Local
processing costs for a join may be given as
௬ܥܲܮ

=∑
௦ ܵ௬ௌ

 (IOCs∑ ∑
 ௬௩[]ܫ

 ௬௩[]ܯ

 +∑
௦ ܵ௬ௌ

 (IOCs∏ ௬ܫ
 ௬ܯ

 +CP

 ∏ ௬ܫ
 ௬ܯ

)

 Where ‘ρp’ ‘Selectivity Factor’ & is defined as the ratio of resultant different
values of a field to the domain of that field (0 <= ρp <= 1). ܯ௬௩[]

 is the size of an
intermediate relation. v[p] represents ‘left previous operation’ of a join for p=1 &
‘right previous operation’ of a join for p=2.

Communication Costs
௬ܯܯܱܥ

 = ∑ ∑ ∑ ܵ௬௩[]ௌ

௩ ܵ௬௩

௦ ܥ௦௩ (௬௩[]ܫ

୰
௬௩[]ܯ

) (b)

 Where ܥ௦௩ (is the communication cost coefficient between site s and v)

1656 Parnika bhat, Rajinder Singh Virk Student

 ௦௩ = 0 if (s = v) (i.e. if the previous operations and current join operation is doneܥ
at the same site) [8]

III. RELATED WORK
(Areerat et al, 2009) In this paper authors had proposed a new join order algorithm
called Exhaustive Greedy (EG) algorithm to optimize intermediate result sizes of join
queries. Exhaustive search and greedy algorithm are combined and modified to
identify good join orders. Exhaustive search algorithm can guarantee the optimal
solution as it produces the entire join trees of a join graph. Greedy algorithm used to
reduce search space by generating only one query tree in a polynomial time. In order
to determine join order selection at subsequent steps, this EG algorithm also updates
join graphs to reflect new size of join nodes and new join selectivities of edges
associated with the join nodes at each step. In addition, most intermediate result sizes
of join queries estimated by the EG algorithm are comparable to the results estimated
by the Exhaustive Search algorithm (ESU)that is modified to update join graphs, it is
named as ESU Algorithm. Exhaustive algorithm is performed at the beginning to find
all the edges in the original join graph then each edge is set as a starting route of the
each candidate route. The remaining join orders of each candidate route then are
performed by greedy algorithm.
 (Ali A. Amer and Hassan I. Abdalla, 2012) In case of distributed database system,
fragmentation, replication and allocation are three main processes that affect its
performance. A database can be fragmented horizontally, vertically or in both ways.
Optimal allocation of fragments leads to optimal solution in case of dynamic
distributed environment. If the fragments are allocated across the different nodes in
such a way that communication cost is reduced it will result in efficient working of
distributed database systems. The authors have proposed an efficient model for data
re-allocation by changing the data access pattern over different nodes in DDBMS. In
this model a set of prefixed query frequency values are used for the distribution of
fragments over different sites. Data fragments are re-allocated based on two
information communication costs between sites and update cost values for each
fragment. The re-allocation of fragments is done depending on the maximal update
cost value for each fragment. Fragment priority (FP) procedure is used for allocation
of fragments to an anticipated site which avoid replication of fragments thereby
reducing the computational complexity. This model provides an effective solution for
dynamic fragments re-allocation problem in case of a distributed relational database
systems by reducing the frequency of fragment transmission from one node to other
over the network, hence improving the overall performance of DDBS.
 (Shahidul Islam Khan and Dr. A. S. M. et al, 2010) In distributed database
systems there are three processes by which data is distributed among various sites,
these are: fragmentation, allocation, and replication. The reliability and performance
of a database system can be improved by effective data processing. Fragmentation
process requires empirical knowledge of type of queries submitted to the centralized
system and their frequencies. For the initial stage of a database design this
fragmentation process is not suitable. In this paper the author had proposed a

Dynamic Estimation of Intermediate Fragment Size 1657

horizontal fragmentation technique is capable of taking proper fragmentation decision
at the initial stage by using the knowledge gathered during requirement analysis phase
without the help of empirical data about query execution. It allocates the fragments
properly among the sites of DDBMS. As fragmentation is done synchronously with
allocation there are no added complexities for allocating fragments to different sites.
Hence, by avoiding frequent remote access and high data transfer among the sites,
DDBMS can be improved significantly.
 (Syam Menon, 2005) A distributed database system comprises of number of
databases (or fragments of databases) stored at multiple sites. All these databases
work together in a way that users don’t realize the presence of multiple databases; it
appears as a single large database. Database is partitioned horizontally or vertically
(or both) to obtain database fragments. For any distributed database system to work
well, these fragments have to be dispersed over the available sites in such a way as to
minimize the total volume of data transmitted and, consequently, the total cost of
transmissions. In a distributed database system the fragments need to be allocated
judiciously at various sites across the communications network. It is difficult to
allocate fragments to most appropriate sites. In this paper the problem of fragment
allocation is solved by new integer programming formulations. This approach handles
the problem with storage and processing capacity constraints. In the presence of
capacity restrictions this approach gives effective solution. The cost of local
processing is assumed to be negligible relative to the cost of communication. Even for
relatively large problems, reformulations are very effective, proved by experiments
conducted over different parameter values. The use of this programming formulation
has reduced the use of heuristic technique. Effective distribution of the database
fragments, affect both performance and cost. In this using new formulations, for the
problem of the fragments are allocated at minimum cost. Even in case of allocating
reasonably large number of fragments the formulations are seen to be extremely
effective as compared to previous formulations. But the limiting factor of this paper is
that none of the approaches presented have been implemented and tested on a real
distributed database system.
 (Lisbeth Rodríguez and Xiaoou Li, 2011) To improve the response time of query
in distributed database two processes are required, these are: Vertical and Horizontal
partitioning of distributed database. In current database management system
horizontal partitioning has received strong attention than vertical partitioning.
Efficient vertical partitioning solution requires monitoring of user queries. In this
paper authors had developed a system called DYVEP (DYnamic VErtical
Partitioning) that dynamically partitions the distributed database into vertical
fragments. Without any intervention from DBA it fragments and re-fragments a
database. To demonstrate acceptable query response time, a Benchmark database
TPC-H is used to carry out experiments. Vertical Partitioning algorithm is used by
DYVEP to determine whether the vertical partitioning scheme (VPS) is better that the
one in place. Results of experiments shows this system adaptively perform vertical
partitioning within efficient query response time. In the future, the results can be
extended to Multimedia database systems, to clearly observe the effect of proposed
system.

1658 Parnika bhat, Rajinder Singh Virk Student

 (B.M. Monjurul Alom, Frans Henskens and Michael Hannaford, 2009) In query
processing in distributed systems the main problem is determining the sequence and
the sites for performing the set of operations if the query is subdivided into sub
queries that require operations at geographically distributed databases, such that the
operating cost for processing the query is minimized. For this authors had proposed a
technique to process the query with minimum intersite data transfer. The proposed
technique is used to determine which relations are to be partitioned into fragments,
and where the fragments are to be sent for processing. The technique generally
fragments the relations that exist in the predicates (the WHERE condition) of the
query. It chooses more than one relation to remain fragmented which exploits
parallelism, while replicating the other relations (excluding the fragmented relations)
to the sites of the fragmented relations. Thus the communication costs and local
processing costs can be reduced due to the reduced size of the fragmented relations
and the response time of queries can be improved.

IV. CONCLUSIONS AND FUTURE SCOPE
Communication cost is one of the major concerns in distributed system. Previously
research has been conducted in area of optimal allocation of data to appropriate sites
to reduce communication cost and improve performance in distributed systems. In this
work effort shall be made to estimate the size of intermediate fragments dynamically.
For this purpose a stochastic stimulator will be used for optimal allocation of
fragments in a distributed environment, where this optimality depends on knowing
communication cost in transferring data fragments from one site to the other. Genetic
Algorithm technique will be used, as GA helps to reach best solutions much faster. In
future, the work can be extended to multimedia database system. As the multimedia
database is a dynamic system, so the advantages of estimating the intermediate
fragments dynamically would be understood much clearly.

V. REFERENCES

[1] Sangkyl Rho, Salvatore T. March, “A Nested Genetic Algorithm for

Distributed Database Design”, IEEE, 1994
[2] Salvatore T. March and Sangkyu Rho, “Allocating Data and Operations to

Nodes in Distributed Database Design”, 1995
[3] M. Tamer Ozsu, Patrick Valduriez, “Principles of Distributed Database

Systems”, Third Edition, Springer, 2011
[4] Shahidul Islam Khan and Dr. A. S. M. Latiful Hoque, “A New Technique for

Database fragmentation in Distributed Systems”, 2010,
[5] B.M. Monjurul Alom, Frans Henskens and Michael Hannaford, “Query

Processing and Optimization in Distributed Database Systems”, IJCSNS, 2009
[6] Rho Sangkyu, T. March Salvatore, “A Comparison of Distributed Database

Design Models”, Seoul Journal of Business Vol. 8 No. 1, 2002
[7] Areerat et al, “Exhaustive Greedy Algorithm for Optimizing Intermediate

Dynamic Estimation of Intermediate Fragment Size 1659

Result Sizes of Join Queries”, IEEE, 2009
[8] Lisbeth Rodríguez and Xiaoou Li, “A Dynamic Vertical Partitioning

Approach for Distributed Database System”, IEEE, 2011
[9] G.R.Bamnote and Himanshu Joshi, “Distributed Database: A Survey”

International Journal Of Computer Science And Applications, 2013
[10] Ali A. Amer and Hassan I. Abdalla, “A Heuristic Approach to Re-Allocate

Data Fragments in DDBSs”, International Conference on Information
Technology and e-Services, IEEE, 2012

[11] Azzam Sleit, “A Dynamic Object Fragmentation and Replication Algorithm In
Distributed Database Systems”, American Journal of Applied Sciences, 2007

[12] Syam Menon, (2005) “Allocating Fragments in Distributed Databases”
Transactions on parallel and distributed systems, IEEE, 2005

[13] Sangkyl Rho, Salvatore T. March, (1994) “A Nested Genetic Algorithm for
Distributed Database Design”, IEEE

