
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 4, Number 12 (2014), pp. 1175-1183
© International Research Publications House
http://www. irphouse.com

Intelligent Traffic Management in High-Speed Networks by
Fuzzy Logic Control

Kadanti Theja

 (CNIS)
Sree Vidyanikethan Engineering College, Andhra Pradesh

ABSTRACT

In view of the fast-emerging Internet traffic, this paper propose a distributed
traffic management framework, in which routers are installed with intelligent
data rate controllers to handle the traffic mass. Unlike other explicit traffic
control protocols that have to evaluate network parameters in order to compute
the allowed source sending rate, our fuzzy-logic-based controller can calculate
the router queue size directly; hence it avoids various potential performance
problems arising from parameter estimations while decreasing much
consumption of computation and memory resources in routers. As a network
parameter, the queue size can be accurately observed and used to proactively
decide if action should be taken to control the source sending rate, thus
increasing the resilience of the network to traffic congestion. The
communication Quality of Service is assured by the good performances of our
scheme such as max-min fairness, low queueing delay and good robustness to
network dynamics. Simulation results and comparisons have verified the
effectiveness and showed that our new traffic management scheme can attain
better performances than the existing protocols that depend on the estimation
of network parameters.

Keywords Congestion control, fuzzy logic control, quality of service, max-
min fairness, robustness, traffic management.

1. INTRODUCTION
Network traffic management can prevent a network from severe congestion and
degradation in throughput-delay performance. Traffic congestion control is one of the
effective approaches to manage the network traffic [1], [2]. Historically, Transmission
Control Protocol Reno [3], [4] is a widely deployed congestion control protocol that
handle the Internet traffic. It has the important feature that the network is treated as a

1176 Kadanti Theja

black box and the source alter its window size based on packet loss signal [5].
However, as an implicit control protocol, TCP confronts various performance
problems (e. g., utilization, fairness and stability) when the Internet BDP (Bandwidth-
Delay Product) continues to increase. These have been widely investigated with
various proposed solutions such as the AQM (Active Queue Management) schemes
[6]-[10] whose control protocols are also implicit in nature. As an alternative, a class
of explicit congestion control protocols has been proposed to signal network traffic
level more precisely by using multiple bits. Examples are the XCP [6], RCP [11],
JetMax [12] and MaxNet [13]. These protocols have their controllers reside in routers
and directly feed link information back to sources so that the link bandwidth could be
efficiently utilized with good scalability and stability in high BDP networks.
 Fuzzy Logic Control [16] has been considered for Intelligence Control. It is a
methodology used to design robust systems that can contend with the common
adverse synthesizing factors such as system nonlinearity, parameter uncertainty,
measurement and modeling imprecision. In addition, fuzzy logic theory gives a
convenient controller design approach based on expert knowledge which is close to
human decision making, and readily helps engineers to model a complicated non-
linear system. In fact, fuzzy logic control has been applied in industrial process
control and showed extraordinary and mature control performance in accuracy,
transient response, robustness and stability.
 Specifically, the objectives of this paper are: 1) to design a new rate-based explicit
congestion controller based on FLC to avoid estimating link parameters such as link
bandwidth, the number of flows, packet loss and network latency, while remaining
stable and robust to network dynamics (Hence, we make this controller “intelligent”);
2) to provide max-min fairness to achieve an effective bandwidth allocation and
utilization; 3) to generate relatively smooth source throughput, maintain a reasonable
network delay and achieve stable jitter performance by controlling the queue size; 4)
to demonstrate our controller has a better QoS performance through case study.
 The contributions of our work lie in: 1) using fuzzy logic theory to design an
explicit rate-based traffic management scheme for the high-speed IP networks; 2) the
application of such a fuzzy logic controller using less performance parameters while
providing better performances than the existing explicit traffic control protocols; 3)
the design of a Fuzzy Smoother mechanism that can generate relatively smooth flow
throughput; 4) the capability of our algorithm to provide max-min fairness even under
large network dynamics that usually render many existing controller unstable.
 For the remainder of the paper, the following notations and symbols pertain.
A Edge value of MFs (Membership Functions) of e (t), beyond which the

MFs of e (t) saturate
B Buffer capacity
c (t) Service rate (output link capacity) of a router
C Edge value of MFs of g (e (t)), beyond which the MFs of g (e (t)) saturate
D Outermost edge value of MFs of u (t)
e (t) Queue error which is one input of the IntelRate controller
g (e (t)) Integration of e (t) which is the other input of the IntelRate controller
m Multiple of TBO to design the width limit for the MFs of input e (t) and g

Intelligent Traffic Management in High-Speed Networks 1177

(e (t))
N Number of LVs (Linguistic Values)
q0 TBO of a router
q (t) IQSize (Instantaneous Queue Size) of a router
u (t) The controller crisp output for each flow
u_ (t) Current source sending rate
v (t) Aggregate uncontrolled incoming traffic rate to a router
y (t) Aggregate controlled incoming traffic rate to a router (also aggregate

controller output)
μPj Input fuzzy set of the IntelRate controller
μUj Output fuzzy set of the IntelRate controller
τfi1 Time delay of a packet from source i to a router
τfi2 Time delay of a packet from a router to its destination i
τbi Feedback delay of a packet from destination i back to source i
τpi RTPD (Round Trip Propagation Delay)
τi RTT (Round Trip Time)

2. TRAFFIC MANAGEMENT PRINCIPLE AND MODELING
We consider a backbone network interconnected by a number of geographically
distributed routers, in which hosts are attached to the access routers which cooperate
with the core routers to enable end-to-end communications. Congestion occurs when
many flows traverse a router and cause its IQSize (Instantaneous Queue Size) to
exceed the buffer capacity, thus making it a bottleneck in the Internet. Since any
router may become bottleneck along an end-to-end data path, we would like each
router to be able to manage its traffic. Below is the general operation principle of our
new traffic management/control algorithm.
 Inside each router, our distributed traffic controller acts as a data rate regulator by
measuring and monitoring the IQSize. As per its application, every host (source)
requests a sending rate it desires by depositing a value into a dedicated field Req_rate
inside the packet header. This field can be updated by any router en route.
Specifically, each router along the data path will compute an allowed source
transmission rate according to the IQSize and then compare it with the rate already
recorded in Req_rate field. If the former is smaller than the latter, the Req_rate field
in the packet header will be updated; otherwise it remains unchanged. After the packet
arrives at the destination, the value of the Req_rate field reflects the allowed data rate
from the most congested router along the path if the value is not more than the desired
rate of the source. The receiver then sends this value back to the source via an ACK
(ACKnowledgment) packet, and the source would update its current sending rate
accordingly. If no router modifies Req_rate field, it means that all routers en route
allow the source to send its data with the requested desired rate.
 In order to implement our new controller in each router, we model a typical AQM
router in Fig. 1 with M sources sending their Internet traffic to their respective
destinations. For i = 1, 2, . . ., M, u_

i (t) is the current sending rate of source i; ui (t) is
the sending rate of source i determined by the routers along the end-to-end path; y (t)

1178 Kadanti Theja

is the incoming aggregate controlled flow rate; v (t) is the incoming aggregate
uncontrolled flow rate, and c (t) is the link bandwidth (measured in bps). For a
particular source-destination pair i, τfi1 is the time delay of a packet from source i to
the router, and τfi2 is the time delay of the packet of source i from the router to the
destination i, while τbi is the feedback delay from destination i back to source i.
Obviously, τpi = τfi1 + τfi2 + τbi is the RTPD (Round Trip Propagation Delay).
Considering other delays en route (e. g., queueing delay), source i may update its
current rate u_ (t) according to the ui (t) when the ACK packet arrives after one RTT
(Round Trip Time) τi.
 Considering the possible dynamics of both incoming traffic and link bandwidth in
the router in Fig. 1, we model the bottleneck link with a queue in which both the
controlled arrival rate y (t) and the service rate c (t) may vary with respect to time. Let
q (t) be the router IQSize. The variations in y (t) and/or c (t) can cause changes in the
queue size of a router, as expressed in the following differential equation.
 q (t) = y (t) + v (t) − c (t) q (t) > 0
 [y (t) + v (t) − c (t)]+ q (t) = 0

where [x]+ = max (0, x).

Fig. 1. System model of an AQM router.

3. THE INTEL RATE CONTROLLER DESIGN
Figure 2 depicts the components of our fuzzy logic traffic controller for controlling
traffic in the network system defined in Fig. 1. Called the IntelRate, it is a TISO
(Two-Input Single-Output) controller. The TBO (Target Buffer Occupancy) q0 > 0 is
the queue size level we aim to achieve upon congestion. The queue deviation e (t) =
q0 −q (t) is one of the two inputs of the controller.

Intelligent Traffic Management in High-Speed Networks 1179

Fig. 2. The IntelRate closed-loop control system.

 In order to remove the steady state error, we choose the integration of e (t) as the
other input of the controller, i. e. g (e (t)) =∫ e (t) dt. The aggregate output is y (t) = ui
(t − τi). Under heavy traffic situations, the IntelRate controller would compute an
allowed sending rate ui (t) for flow i according to the current IQSize so that q (t) can
be stabilized around q0. In our design, IQSize q (t) is the only parameter each router
needs to measure in order to complete the closed-loop control. FLC is a non-linear
mapping of inputs into outputs, which consists of four steps, i. e., rule base building,
fuzzification, inference and defuzzification. The concepts of fuzzy set and logic of
FLC were introduced in 1965 by Zadeh, and it was basically extended from two-
valued logic to the continuous interval by adding the intermediate values between
absolute TRUE and FALSE.

A. Linguistic Description and Rule Base
We define the crisp inputs e (t), g (e (t)) and output u (t) with the linguistic variables
_e (t), _g (e (t)) and _u (t), respectively. There are N (N = 1, 2, 3, . . .) LVs (Linguistic
Values) assigned to each of these linguistic variables. Specifically, we let Pi = {Pi

j : j =
1, 2, …, N } be the input LVs with i = 1 for e_ (t) and i = 2 for g_ (e (t)), and let U =
{U j : j = 1, 2, …, N } for _u (t). For example, when N = 9, we can assign the
following values or both the inputs e (t) and g (e (t)). Pi

1=“Negative Very Large
(NV),” Pi

2=“Negative Large (NL),” Pi
3= “Negative Medium (NM),” Pi

4=“Negative
Small (NS),” Pi

5=“Zero (ZR),” Pi
6=“Positive Small (PS),” Pi

7=“Positive Medium
(PM),” Pi

8=“Positive Large (PL),” and Pi
9 =“Positive Very Large (PV),” i = 1, 2.

Similarly, we can designate the output when N = 9 with the following linguistic
values. U 1 =“Zero (ZR),” U2 =“Extremely Small (ES),” U 3=“Very Small (VS),” U 4
=“Small (SM),” U 5 =“Medium (MD),” U 6 =“Big (BG),” U7 =“Very Big (VB),” U8
=“Extremely Big (EB),” and U 9 =“Maximum (MX).” Table I illustrates the controller
rule base using N = 9. The rule base is the set of linguistic rules used to map the inputs
to the output using the “If. . . Then. . .” format, e. g. “If e (t) is ZR (Zero) and g (e (t))
is PS (Positive Small), Then u (t) is BG (Big).” In the following sections, we refer to a
rule in this able by the notation ﴾ P1

j, P2
k, Ul ﴿, where j, k, l = 1, 2, . . ., N, e. g ﴾ P1

5, P2
2,

U2﴿= (ZR, NL, ES).

B. Membership Function, Fuzzification and Reference
Our IntelRate controller employs the isosceles triangular and trapezoid-like functions
as its MFs (Membership Func-tions). Figure 3 describes the MFs used to determine

1180 Kadanti Theja

the certainty of a crisp input or output. We let P1 be the UoD1 for the input p1 = e (t),
and P2 be the UoD for the input p2 = g (e (t)). The value of MFs (i. e., the certainty
degree) for crisp inputs pi (i = 1, 2) is designated by μPij (pi). Similarly, we let Z be the
UoD of the output z = u (t), and the certainty degree of the crisp output z is designated
by μUj (z). The above μP j (pi) or μUj (z) is obtained by the “Singleton Fuzzification” i
method. Thus the input and output fuzzy sets can be defined with Pi

j= { (pi, μPj (pi) :
pi ϵ Pi)}, i = 1, 2 and, Uj = { (z, μUj (z)} : z ∈ Z}, j = 1, 2, . . ., N, respectively.

TABLE I RULE TABLE FOR INTELRATE CONTROLLER (9 LVS)

 To determine how much a rule is certain to a current situation, our controller
applies the Zadeh AND logic to perform the inference mechanism, e. g. for crisp
inputs p1 and p2, the final certainty (also referred to as the firing level) of a rule is
computed with μP1

m
∩P2

m= min μP1
m (p1), μP2

m (p2) : p [i] ∈ Pi i = 1, 2 and m, n = 1, 2, .
. ., N, where min is the minimum operation in the Zadeh AND logic. While Fig. 3 is
used to illustrate the design of a general FS, the designated values actually come from
an example of N = 9 LVs with the absolute values of both the upper and lower limits
of g (e (t)) set to mq0. Since e (t) is bounded by the physical size of a queue, we have
the boundaries according to the limits q0−B ≤ e (t) ≤ q0. The vertical dashed lines in
Fig. 3 denote those boundaries of inputs or output. Accordingly, the dashed box in
Table I contains the rules that the IntelRate controller operates on. There are three
LVs that e (t) can take (i. e., “NS,” “ZR” and “PS”) compared with the nine values
(from NV to PV covering all the LVs) for g (e (t)). As shown, nine different LVs
(from ZR to MX) are used to give a gradual change in the output u (t) for each
combination of e (t) and g (e (t)).

C. Defuzzification
For the defuzzification algorithm, the IntelRate controller applies the COG (Center of
Gravity) method to obtain the crisp output with the equation u (t) = (Σk

j=1 cjSj) / (Σk
j=1

Intelligent Traffic Management in High-Speed Networks 1181

Sj) [36], where k is the number of rules; cj is the bottom centroid of a triangular in the
output MFs, and Sj is the area of a triangle with its top chopped off as per μP1

m
∩P2

m
discussed above. Since each parameter in the crisp input pair (p1, p2) can take on two
different values in the IntelRate controller, we have altogether k = 4 rules for
defuzzification each time.

Fig. 3. Membership functions with FS.

D. The Control Procedure
Figure 4 shows the new field in the packet congestion header that we need to support
our controller algorithm for the operation principle mentioned in Section II. As
discussed, we need to include in the congestion header a new field called req_rate to
carry the desired sending rate from the source and which will be continuously updated
by the allowed sending rate when the packet passes each router.

1182 Kadanti Theja

Fig. 4. Congestion header.

 Below is a summary of the traffic-handling procedure of the IntelRate controller
in a router.

1. Upon the arrival of a packet, the router take Req_rate from the congestion
header of the packet.

2. Sample IQSize q (t) and update e (t) and g (e (t)).
3. Compute the output u (t) and compare it with Req_rate.

a. If u (t) < Req_rate, it means that the link does not have enough bandwidth
to accommodate the requested amount of sending rate. The Req_rate field
in the congestion header is then updated by u (t).

b. Otherwise the Req_rate field remains unchanged.

4. If an operation cycle d is over, update the crisp output u (t) and the output
edge value of D.

 Note that this procedure actually allows the router to per-form the max-min
fairness in that the greedy flows are always restricted to u (t) by a router under heavy
traffic conditions while those small flows whose desired sending rate are smaller than
u (t) along their data path have no such a restriction. As mentioned in the operation
principle (Section II), when the packet arrives at the destination, the receiver extracts
Req_rate from the header and records it into the ACK packet before sending it back to
the source.

4. CONCLUSION
A novel traffic management scheme, called the IntelRate controller, has been
proposed to manage the Internet conges-tion in order to assure the quality of service
for different ser-vice applications. The controller is designed by paying atten-tion to
the disadvantages as well as the advantages of the exist-ing congestion control
protocols. As a distributed operation in networks, the IntelRate controller uses the
instantaneous queue size alone to effectively throttle the source sending rate with
max-min fairness. Unlike the existing explicit traffic control protocols that potentially
suffer from performance problems or high router resource consumption due to the
estimation of the network parameters, the IntelRate controller can overcome those
fundamental deficiencies. To verify the effectiveness and superiority of the IntelRate
controller, extensive experiments have been conducted in OPNET modeler. In
addition to the feature of the FLC being able to intelligently tackle the non-linearity of
the traffic control systems, the success of the IntelRate controller is also attributed to
the careful design of the fuzzy logic elements.

Intelligent Traffic Management in High-Speed Networks 1183

5. REFERENCES

[1] M. Welzl, Network Congestion Control: Managing Internet Traffic. John Wiley
& Sons Ltd., 2005.

[2] R. Jain, “Congestion control and traffic management in ATM networks: recent
advances and a survey,” Computer Networks ISDN Syst., vol. 28, no. 13, pp.
1723-1738, Oct. 1996.

[3] V. Jacobson, “Congestion avoidance and control,” in Proc. 1988 SIG-COMM,
pp. 314-329.

[4] V. Jacobson, “Modified TCP congestion avoidance algorithm,” Apr. 1990.
[5] K. K. Ramakrishnan and S. Floyd, “Proposals to add explicit congestion

notification (ECN) to IP,” RFC 2481, Jan. 1999.
[6] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high bandwidth-

delay product networks,” in Proc. 2002 SIGCOMM, pp. 89-102.
[7] S. H. Low, F. Paganini, J. Wang, et al., “Dynamics of TCP/AQM and a

scalable control,” in Proc. 2002 IEEE INFOCOM, vol. 1, pp. 239-248.
[8] S. Floyd, “High-speed TCP for large congestion windows,” RFC 3649, Dec.

2003.
[9] W. Feng and S. Vanichpun, “Enabling compatibility between TCP Reno and

TCP Vegas,” in Proc. 2003 Symp. Applications Internet, pp. 301-308.
[10] [10] M. M. Hassani and R. Berangi, “An analytical model for evaluating

utilization of TCP Reno,” in Proc. 2007 Int. Conf. Computer Syst.
Technologies, p. 14-1-7.

[11] N. Dukkipati, N. McKeown, and A. G. Fraser, “RCP-AC congestion control to
make flows complete quickly in any environment,” in Proc. 2006 IEEE
INFOCOM, pp. 1-5.

[12] Y. Zhang, D. Leonard, and D. Loguinov, “JetMax: scalable max-min
congestion control for high-speed heterogeneous networks,” in Proc. 2006
IEEE INFOCOM, pp. 1-13.

[13] B. Wydrowski, L. Andrew, and M. Zukerman, “MaxNet: congestion control
architecture for scalable networks,” IEEE Commun. Lett., vol. 7, no. 10, pp.
511-513, Oct. 2003.

[14] Y. Zhang and M. Ahmed, “A control theoretic analysis of XCP,” in Proc. 2005
IEEE INFOCOM, vol. 4, pp. 2831-2835.

[15] Y. Zhang and T. R. Henderson, “An implementation and experimental study of
the explicit control protocol (XCP),” in Proc. 2005 IEEE INFOCOM, vol. 2,
pp. 1037-1048.

[16] K. M. Passino and S. Yurkovich, Fuzzy Control. Addison Wesley Longman
Inc., 1998.

