
International Journal of Information and Computation Technology.
ISSN 0974-2239 Volume 3, Number 5 (2013), pp. 471-478
© International Research Publications House
http://www. irphouse.com /ijict.htm

Analysis of Parallelization Techniques and Tools

S. Prema1 and R. Jehadeesan2

1,2Computer Division, Indira Gandhi Centre for Atomic Research,
DAE, Kalpakkam, INDIA.

Abstract

Parallel Computing solves computationally large problems by
partitioning into multiple tasks and running simultaneously on
multicore or multiprocessor environment based on shared or
distributed memory architectures. New multicore era demands
software programmer to develop parallel programs to completely
utilize the hardware parallelism. Writing parallel program manually for
complex problem is a tedious and time consuming process. Hence,
automatic parallelization tools were evolved to automate the process of
converting sequential code to parallel. Parallelization techniques like
Dependency Analysis and Loop Parallelization plays a major role in
parallelization process. This paper aims at providing brief survey of
existing OpenMP based parallelization tools and also the anlaysis on
the performance of two such tools on typical problems.
The OpenMP directives based tools Cetus and Par4all are taken for our
case studies. The performance of the automated parallelization on
sample program were studied and analyzed in terms of execution time
and speedup. The study revealed the conditions under which they
could effectively parallelize the code and the conditions they could not
handle as effectively as manual parallelization. Also many of the
available parallelization tools are meant for shared memory hardware
architecture and relatively a very few automated tools based on MPI
are available for distributed memory architectures. The paper
underscores the need for efficient parallelization tools supporting
different parallel processing environments, with the ability to identify
and exploit the parallelism by inserting parallel directives or APIs in
serial programs.

S. Prema & R. Jehadeesan

472

Keywords: Automatic Parallelization; Shared Memory; Distributed
Memory; Automatic Parallelization; Dependency Analysis; Loop
Parallelization; OpenMP; MPI;

1. Introduction
A drastic shift towards parallel computing from serial computing is mainly due to Von
Neumann bottleneck [Laird, 2009], where latency is the most important problem.
Parallel computing [Pacheco, 2011] solves large problem concurrently using multiple
cores or CPUs, thereby saving execution time. Moore’s law has created a major impact
in software and hardware industry. Inorder to take the full advantage of the hardware,
the software has to be written in a multi-threaded or multi-process manner. Hence
parallelism becomes the future of computing. Writing parallel programs manually has
become tedious and time consuming process. Hence to achieve high performance and
functionally correct parallel programming, automatic parallelization is important
[Bliss, 2007]. Automatic parallelization [Midkiff, 2012] is the conversion of sequential
code to parallel code inorder to utilize the multiprocessor architecture simultaneously.
This converted parallel code can be used to run on multicore machines. The need for
automatic parallelization has two main reasons: (i) To achieve effective speedup
[Felician, 2004]. (ii) To relieve programmer from complex and time consuming
manual parallel programming [Qian, 2012].

2. Parallelization Techniques
Process of parallelization involves: (i) partitioning complex program to tasks and
mapping it to different processors (ii) maintaining communication and synchronization
between processors (iii) load balancing [Bliss, 2007]. Dependency analysis and Loop
parallelization are the most important parallelization techniques.

2.1 Dependency Analysis
Dependency analysis plays a major role in parallelization process [Qian, 2012]. Two
statements can be executed in parallel only when there is no dependency between
instructions. Hence these dependencies should be removed to make the code
parallelizable. Identifying dependency relation between statements involves complex
analysis. Long term goal for many researchers centres on dependency analysis.

2.2 Loop Parallelization
Loop parallelization is significant since 90% of the execution time is mostly due to
loops in the code [Felician, 2004]. Distribution of loop elements into chunks and
assigning to different processors will reduce the latency. In loop parallelization,
parallelizing nested loop efficiently is a challenging task.

Analysis of Parallelization Techniques and Tools 473

3. Parallelization Tools
Automatic parallelization tools are designed to convert manually written serial code to
parallel code by inserting parallel APIs or directives like OpenMP, OpenCL, MPI,
CUDA, etc. [Qian, 2012]. There are many parallelization tools available. Some
parallelization tools like ICU-PFC, Cetus, Par4all and Polaris are based on OpenMP
which are freely available. Olympix and MPI/Work Pool model tools are based on
MPI. In this paper, two parallelization tools were considered, Cetus and Par4all for
case studies. Performance analyses were done on Cetus and Par4all in terms of
computing time and speedup.

3.1 Cetus
Cetus is an automatic parallelization tool that does source to source transformation
[Dave, 2009]. It converts sequential ‘C’ code to OpenMP inserted parallel ‘C’ code.
OpenMP [Chapman, 2008] is a parallel library that can run on shared memory
multiprocessor. Cetus is user-friendly. This tool supports all linux environments. The
tool implements privatization, reduction variable recognition and induction variable
substitution.

3.2 Par4all Tool
Par4all is an open source automatic parallelizer which does parallelization and
optimization for ‘C’ program. When manually opted, the parallelized codes create new
OpenMP, OpenCL or CUDA source codes. The converted parallel codes are then
ported to multicore systems for execution [Amini, 2012]. Par4all can be installed only
on debian or ubuntu platform. Par4all does array privatization, reduction variable
recognition and induction variable substitution.

4. Performance Analysis on Cetus and Par4all
4.1. Case Study
A survey was made on the usage of OpenMP clauses like private, shared, atomicity,
reduction, first private, last private and collapse clauses in parallel programs. Analysis
of Cetus and Par4all tools were done using sample programs. Cetus and Par4all does
parallelization only for ‘for’ loops whereas it does not parallelize ‘while’ loops and
‘do-while’ loops. Cetus and Par4all failed to insert parallel directives for some pre-
defined functions like drand48(), srand(), etc. Cetus and Par4all parallelize user-
defined functions. Cetus does inlining of function thereby reducing the call and return
time.

4.2. Experiment
The Cetus tool was installed in Red-Hat Linux 2.6 and Par4all tool was installed in
Ubuntu-12.04. Sample programs were defined to analyse the tools: (i) square root of
complex numbers (ii) matrix multiplication. In supercomputing parallel cluster, the
program was made to run on one node that has two quad-core processors. The total

S. Prema & R. Jehadeesan

474

memory freely available in the node is 15.67 GB. The coding was made to run in ‘icc’
compiler. Timing and speedup analysis were done for sequential coding and for
converted parallel coding (mainly loops). The converted parallel coding was executed
by varying number of threads as 2, 4 and 8 and its results were noted.

4.2.1 Square Root of Complex Numbers in a one dimensional array. Calculation of
real and imaginary part of complex number (a + bi) is done for a large array size. The
loops used are single loop in the program. Cetus and Par4all tools showed effective
parallelization results which are depicted in Fig.1. Hence, manual parallelization was
not required. The speedup for Cetus converted parallel code showed maximum speed
up as 1.35, 2.29 and 3.15 for 2 threads, 4 threads and 8 threads respectively and Par4all
converted parallel code showed maximum speedup as 1.37, 2.34 and 3.17 for 2
threads, 4 threads and 8 threads respectively which are depicted in Fig.2. It is observed
that, parallelization made on single loop program by Cetus and Par4all does not yield
effective speedup i.e. ideal speedup, which may be due to stall cycles in the pipeline
execution that are caused because of data dependency between two applications
running on available threads.

3.60E+008 4.00E+008 4.40E+008 4.80E+008 5.20E+008
4

8

12

16

20

Array Size

 Sequential
 2 Threads
 4 Threads
 8 Threads

(a)

3.60E+008 4.00E+008 4.40E+008 4.80E+008 5.20E+008
4

8

12

16

20

E
xe

cu
tio

n
T

im
e

(s
)

Array Size

 Sequential
 2 Threads
 4 Threads
 8 Threads

(b)

Figure 1: Execution time of square root of complex numbers

obtained by (a) Cetus (b) Par4all.

Analysis of Parallelization Techniques and Tools 475

3.60E+008 4.00E+008 4.40E+008 4.80E+008 5.20E+0080

1

2

3

4
 2 Threads
 4 Threads
 8 Threads

Sp
ee

du
p

Array Size

(a)

3.60E+008 4.00E+008 4.40E+008 4.80E+008 5.20E+0080

1

2

3

4
 2 Threads
 4 Threads
 8 Threads

Array Size

(b)

Figure 2: Speedup of square root of complex numbers

obtained by (a) Cetus (b) Par4all.

4.2.2 Matrix Multiplication. Calculation of matrix multiplication, c[n][n] +=

(a[n][n] * b[n][n]) was done for a large matrix size. Nested loops were used in the
program. It was observed that Cetus and Par4all parallelizes outer loop but failed to
parallelize inner loop. Hence manual parallelization was done. Manually converted
parallel code showed better timing results and it showed good parallelization results,
which are shown in Fig.3. Cetus converted parallel code with ‘nested loop disabled’
showed maximum speedup as 1.96, 3.51 and 6.54 for 2, 4 and 8 threads respectively.
When ‘nested loop enabled’ it showed maximum speedup as 3.53, 5.26 and 5.01 for 2,
4 and 8 threads respectively; this is due to overhead in number of threads. Par4all
converted parallel code showed maximum speedup as 5.61, 11.33 and 10.09 for 2, 4
and 8 threads respectively; this is due to partial parallelization of nested loops.
Manually converted parallel code showed better speedup as 6.39, 7.73 and 13.01 for 2,
4 and 8 threads respectively, which are depicted in Fig.4.

S. Prema & R. Jehadeesan

476

1500 2000 2500 3000 35000

100

200

300

400

500

M atrix Size

 Sequential
 2 T hreads
 4 T hreads
 8 T hreads

(a)

1500 2000 2500 3000 35000

100

200

300

400

500

M atrix Size

 Sequential
 2 T hreads
 4 T hreads
 8 T hreads

(b)

1500 2000 2500 3000 35000

100

200

300

400

500

E
xe

cu
tio

n
T

im
e

(s
)

M atrix Size

 Sequential
 2 Threads
 4 Threads
 8 Threads

(d)

1500 2000 2500 3000 3500
0

100

200

300

400

500

E
xe

cu
tio

n
T

im
e

(s
)

M atrix Size

 S equential
 2 T hreads
 4 T hreads
 8 T hreads

(c)

Figure 3: Execution time of matrix multiplication obtained by (a) Cetus with ‘nested

loop disabled’ (b) Cetus with ‘nested loop enabled’ (c) Par4all (d) Manual.

1500 2000 2500 3000 3500
0

4

8

12
 2 Threads
 4 Threads
 8 Threads

(a)

1500 2000 2500 3000 3500
0

4

8

12

Matrix Size

 2 Threads
 4 Threads
 8 Threads

(b)

1500 2000 2500 3000 3500
0

4

8

12

Matrix Size

Sp
ee

du
p

Matrix Size

 2 Threads
 4 Threads
 8 Threads

(c)

1500 2000 2500 3000 3500
0

4

8

12

Sp
ee

du
p

Matrix Size

 2 Threads
 4 Threads
 8 Threads

(d)

Figure 4: Speedup of matrix multiplication obtained by (a) Cetus with nested loop

disabled (b) Cetus with nested loop enabled (c) Par4all (d) Manual.

Analysis of Parallelization Techniques and Tools 477

5. Conclusions
Performance analysis on Cetus and Par4all was done using sample programs and it was
concluded that the tools does parallelization in an effective way for single loops. Cetus
and Par4all does not show effective results for nested loops. Manual parallelization
was done for matrix multiplication problem and the performance degradation was
rectified and achieved maximum speedup than tool converted code. Parallelization
tools that efficiently insert parallel directives or APIs should be developed. Cetus and
Par4all tools are based on OpenMP directives for shared memory processors. There are
very few MPI based tools. Hence there is a need to develop OpenMP and MPI based
tools for shared memory and distributed memory processors.

References

[1] A Felician (2004), How to Parallelize a Sequential Program, Preceedings of

the 5th Biennial International Symposium. Brasov, Romania, pp. 424 – 428
[2] A Laird (2009), The Von Neumann Architecture Topic Paper #3, Survey of

Programming Languages.
[3] B Chapman et al. (2008), Using OpenMP, The MIT Press, London, England.
[4] C Dave et al. (2009), Cetus: A Source-To-Source Compiler Infrastructure for

Multicores, IEEE Computer, 42, 12, pp. 36-42
[5] M Amini et al. (2012), Par4all: From Convex Array Regions to

Heterogeneous Computing, 2nd International Workshop on Polyhedral
Compilation Techniques (IMPACT), Paris, France

[6] N Bliss (2007), Addressing the Multicore Trend with Automatic
Parallelization, Lincoln Laboratory Journal, 17, 1, pp. 187-198

[7] P S Pacheco (2011), An Introduction to Parallel Programming, University of
San Francisco, USA.

[8] S P Midkiff (2012), Automatic Parallelization: An Overview of Fundamental
Compiler Techniques, Purdue University, West Lafayette

[9] Y Qian (2012), Automatic Parallelization Tools, Proceedings of the World
Congress on Engineering and Computer Science, San Francisco, USA, 1, pp.
97-101.

S. Prema & R. Jehadeesan

478

