
International Journal of Information and Computation Technology.
ISSN 0974-2239 Volume 3, Number 5 (2013), pp. 405-410
© International Research Publications House
http://www. irphouse.com /ijict.htm

A Novel Approach for Optimal File Allocation in Memory
and Obtaining an Improved Version of Memory

Mapping Technique

Jayant Balyan, Khushboo Pahwa and Jyotika Pruthi

Department of Computer Science and Engineering
ITM University, Gurgaon.

Abstract

The imperative nature of memory utilization has always been
questioned by the users. Always being under the scrutiny, there have
been a lot of attempts for its improvisation. A more common approach
is to use memory allocation tables and numerous pointers which
require an impermissible usage of memory. The principle objective of
this paper is to overcome such limitations through a new vision which
considers memory segments in the form of cuboids and their edges
representing information such as time and date of their creation. This
method can be used effectively in case of sequential access. As a result
a simple method for file access with reduced number of pointers is
obtained.

1. Introduction
In a computer system, files containing programs and data are organized into a logical
structure called the file system. To manage the vast amount of data in a file system
effectively, storage hierarchies have been introduced, combining fast but expensive
devices with slower and cheaper ones to reduce storage costs and improve access
speed. The management of multilevel storage hierarchies deals with the problem of
assigning files within a file system to different levels of the hierarchy, based upon
expected use. Since it is economically infeasible to store all files on fastest device, files
that are used most often should be placed on faster devices, while files that are used
infrequently should be placed on slower devices. In this way it is possible for average
access time to approach that of the fastest (and most expensive) device while storage
cost approaches that of the least expensive and slowest device. File assignment, also

 Jayant Balyan et al

406

known as file allocation or file loading is the problem of assigning files in a storage
hierarchy so as to achieve performance objectives. Changes in file assignment are
essential when the usage pattern of the files changes with time and computational loads
[1].A data processing system such as a personal computer contains a file allocation
table that is stored in memory in a packed format. During initialization, file allocation
tables stored on an external storage device are “packed” and stored in a region of
memory and subsequently “unpacked” during a read operation. For that purpose,
sometimes it feels convenient to use numerous pointers, pointing to different locations
of the memory containing data. Regardless to say they acquire some of the memory
spaces on their own. This paper concentrates on using the least amount of memory
occupied by these clusters of pointers by providing an algorithm which will use the
time of creation of any file provided by the operating system to generate its physical
address.

Figure 1: Sphere containing a large number of

data segments in the form of cuboids.

2. Approach used
A Cuboid contains twelve edges.
 Consider the addressing of each data item.
 We can represent each edge with the following way
 20.13.08.02.05.12.55.19.09.99
 Year : 2013-> 20.13(16bits)
Month -> 8th month i.e. August (4bits)
Week -> 2nd week of month August (4bits)
Day -> 5th day of second week 9th August, Friday (4bits)
Hour of that day -> 12th hour (8bits)
Minute of that hour -> 55rd i.e. 55 minutes past 11 (8bits)
Second of that Minute -> 19th (8bits)
Milliseconds -> 09.99(12 bits)
 These together will form 64 bits of addressing.

A Novel Approach for Optimal File Allocation in Memory and Obtaining 407

Figure 2: Representing each edge of Cuboid with each of this data.

After searching for the proper cuboid we’ll get to know the address and then the

data is considered to be stored inside that cuboid or we can say at that memory address.
Now, this would be the logical address of the file as shown below.

20.13.08.02.05.12.55.19.09.99
Converting to binary digits
0010.0000.0001.0011.1000.0100.0101.0010.0000.0101.0101.0101.1001.1001.100

1.1001
This logical address could be mapped into its physical address sequentially or

through some algorithm. For example the physical address of any file created on 2013-
08-09 at 6:13pm 30 second 211 milliseconds. Could be let us say,

0010.0000.0001.0011.1000.1001.0101.0010.0000.0101.0101.0101.1001.0010.101
0.1010

But its physical address could be:
1000. 0000. 0000. 0100. 0000. 0000. 0000. 0000. 1000. 0010. 0000. 0000. 0000.

0100. 0000. 0001
The algorithm to convert this logical address to physical address has been

discussed later in this paper here. Now, these spheres and cuboids are just being used
as a way for better understanding, the actual implementation of algorithm may not
consider the memory being a sphere or data being stored in cuboids, after
implementation the mapping even may look like Figure 3.

Figure 3: Representation of cuboids inside memory.

 Jayant Balyan et al

408

Here, we can see that after the actual implementation of the concept the cuboids
inside the memory may look like this.It may be observed how the edges could be
deformed to cover the maximum possible area of the sphere i.e. the memory of the
system. Thus, here it could be observed that the algorithm must have to deviate a bit
from the original concept to achieve the aim of the utilization of the maximum areas of
the memory. Subsequently, the edges could be longer or shorter or equal comparing to
each other in order to aim for better utilization of the whole memory.

3. Algorithm and method of implementation
To achieve the objective, an algorithm is being constructed to store these files
sequentially. Apparently, the need of maintaining tables couldn’t be avoided. So, here
is the form of table one may get: -

Table I: Table showing time and date of creation of file.

No Name Memory allocated (First
address)

Memory allocated
(End address)

1 20.13.08.0
4.05.20.55.
59.9.9.9

0000. 0000. 0000. 0000.
0000. 0000. 0000. 0000.
0000.0000. 0000. 0000.
0000. 0000. 0000. 0001

0000. 0000. 0000. 0000.
0000. 0000. 0000. 0000.
0000.0000. 0000. 0000.
0000. 0000. 1001. 1000

2 20.13.08.1
4.07.24.50.
58.9.9.8

0000. 0000. 0000. 0000.
0000. 0000. 0000. 0000.
0000.0000. 0000. 0000.
0000. 0000. 1001. 1001

0000. 0000. 0000. 0000.
0000. 0000. 0000. 0000.
0000.0000. 0000. 0000.
0010. 0011. 1001. 1000

A Novel Approach for Optimal File Allocation in Memory and Obtaining 409

 Jayant Balyan et al

410

4. Conclusion
Rapid increase in memory size has made it difficult to allocate and access memory
efficiently. Use of a large number of pointers makes it even more cumbersome.
Moreover with the increase in functionalities provided by any system the required for
fast access of the user created files has been increased exponentially. Sequential access
and allocation has always been the answer to many of these issues. This concept
attempts to serve a solution which can sequentially store and access the data and files
created by the user.

5. References and Bibliography

[1] Milind B.Deshpande,Richard B.Bunt. Dynamic File Management Techniques
http://www.cs.cmu.edu/~sm79/w3/archives/papers/deshpand.pdf

[2] Paul R.Wilson, Mark S.Johnstone, Micheal Neely, and David Boles.Dynamic
Storage Allocation :A survey and critical review ,published in Lecture Notes
in Computer Science Springer,Volume 986,1995,pp 1-116
http://link.springer.com/chapter/10.1007/3-540-60368-9_19

[3] Bunt,R.B,J.M Murphy and S.Majumdar ,”A measure of Program Locality and
its Application”, Proceedings ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems ,Cambridge
,Massachusetts, August 1984,28-40.

[4] Chu, W.W and H.Opderbeck,”Program Behaviour and the Page Fault
Frequency Replacement Algorithm”,Computer,vol 9,No. 11,November
1976,29-38.

[5] Denning,P.J,”The working set model of program behavior”,CACM,Vol 11,No
5,May 1968,323-333.

[6] Denning,P.J and Slutz ,D.R,Generalized Working sets for segment reference
strings”, CACM ,Vol 21,No 9,,September 1978,750-759.

