
International Journal of Information and Computation Technology.
ISSN 0974-2239 Volume 3, Number 8 (2013), pp. 757-764
© International Research Publications House
http://www. irphouse.com /ijict.htm

Implementation of Secure Hash Algorithm-1 using FPGA

Nalini C. Iyer and *Sagarika Mandal

Dept. of Electronics and Communication Engineering,
BVBCET, Hubli, Karnataka, India.

Abstract

Hash functions play a significant role in today's cryptographic
applications. SHA (Secure Hash Algorithm) is a famous message
compress standard used in computer cryptography, it can compress a
long message to become a short message abstract. In this paper, SHA-
1 is implemented using Verilog HDL (Hardware Description
Language). The SHA-1 Verilog source code is divided into three
modules, namely Initial, Round and Top module. The Verilog code is
synthesized on Virtex5 FPGA using Xilinx ISE 14.2 software tool. The
test vectors have been applied to verify the correctness of the SHA-1
functionality. A comparison between the proposed SHA-1 hash
function implementation with other related works shows that it
achieves a higher throughput and also higher clock frequency.

Keywords: Secure Hash Algorithm-1 (SHA-1), hash function, Verilog
HDL, FPGA.

1. Introduction
Cryptography is one of the most useful fields in the wireless communication area
and personal communication s ys t e ms , where information security has become
more and more important area of interest [1]. Cryptographic algorithms take care
of specific information on security requirements such as data integrity,
c o n f id e n t ia l i t y a nd data o r ig in authentication.

To assure that a communication is authentic, the authentication service is of much
concern. The function of authentication services is to assure recipient that the message
is from the source it claims to be [1]. In computer security, the process of attempting to
verify the digital identity of the sender of a piece of information is known as
authentication.

Nalini C. Iyer & Sagarika Mandal

758

In order to make a very secure cryptographic portable electronic device, the
selected well-known algorithm must be trusted, time-tested and widely peer-reviewed
in the global cryptographic community. A one-way hash function is an algorithm that
takes input data and irreversibly creates a digest of that data. One of the trusted one-
way hash function are SHA-1 (Secure Hash Algorithm) [2,3], SHA-256, SHA-384 and
SHA-512. SHA algorithms are called secure because, for a given algorithm, it is
computationally infeasible 1) to find a message that corresponds to a given message
digest or 2) to find two different messages that produce the same message digest. Any
change to a message will, with a very high probability results in a different message
digest. This will result in a verification failure when the secure hash algorithm is used
with a digital signature algorithm or a keyed-hash message authentication algorithm.

2. Overview of SHA
SHA- 1 is a complex algorithm that involves multiple 32-bit, 5-way additions,
complex logical functions, data shifting and a great deal of repetition. Generally
implementations of the SHA-1 algorithm have required large die areas and so made
fairly expensive portable device. A proposed method has been applied to be relatively
inexpensive one. The architecture is presented for SHA-1 hash function. The
implementation is conducted using Verilog HDL on Xilinx FPGA device. The
synthesis results are presented and compared with other SHA-1 implementations.
Here, the hardware terms of system performance (throughput), operating frequency
and covered area are compared.

Hash algorithms, also called as message digest algorithms, are generating a
unique fixed length bit vector for an arbitrary-length message M [4]. The bit vector is
called the hash of the message and it is denoted as H. This hash value should be the
same each time the same input is hashed. A hash function used in cryptography should
be one way and collision resistant.

The purpose of a hash function is to produce a fingerprint of a file, message or
other block of data. A hash function must have the following requirements:

 One-way property: For any given value h, it is computationally infeasible to
find x with H(x) = h.

 Weak collision resistance: For any given block x, it is computationally
infeasible to find y with H(x) = H(y).

 Strong collision resistance: For any given block x, it is computationally
infeasible to find x,y with H(x) = H(y).

SHA (Secure Hash Algorithm) is designed by National Security Agency of the

U.S.A. It is a message compress standard used to cooperate DSS (Digital Signature
Standard) that is designed by NIST (National Institute of Standards and Technology)
[11,12]. Though SHA is designed for DSS, it can be also used in many protocols or
secure algorithm. The original version of SHA is called SHA or SHA-0. SHA-1 is the
improved version of SHA-0.

Implementation of Secure Hash Algorithm-1 using FPGA 759

3. Design and Synthesis of SHA-1
The input of SHA-1 is a message which is no longer than 264bits can generate a 160 bit
message abstract. The input is processed in 512-bit blocks. The algorithm processing
includes the following steps:

1. Padding: The purpose of message padding is to make the total length of a
padded message congruent to 448 module 512. The number of padding bits is
between 1 and 512. Padding consists of 1 single 1-bit followed by a series of 0-
bit.

2. Appending Length: A 64-bit binary representation of the original length of the
message is appended to the end of the message.

3. Initialize the SHA-1 Buffer: The message digest is computed using the final
padded message. The computation uses two buffers, each consisting of five 32-
bit words, and a sequence of eighty 32-bit words. The words of the first 5-word
buffer are labeled A, B, C, D and E. The words of the second 5-word buffer are
labeled Ho, H1, H2, H3 and H4. The words of the 80-word sequence are
labeled W0, W1, W2, W3, W4,, W79. A single word buffer Temp is also
employed. Before processing any blocks, the Ho, H1, H2, H3 and H4 are
initialized as follows: in hex,
H0 = 67452301, H1= EFCDAB89, H2 = 98BADCFE, H3 = 10325476 and H4 =
C3D2E1F0

4. Hash Calculation: SHA1 may be used to hash a message, M, having a length of
l bits, where 0 ≤ l ≤ 264.

The algorithm uses:
 A message schedule of 80x32-bit words. The words f the message schedule are

labeled W0, W1, W2, ………., W79 and W80.
 Five working variables of 32-bits each. The working variables are labeled as:

A, B, C, D and E.
 A hash value of five 32-bit words. The words of the hash value are labeled as:

H0(i), H1(i), H2(i), H3(i), H4(i) which will hold the initial hash value H(0), replaced
by each intermediate hash value (after each message block is processed) H(i)
where i denotes the number of 512 bit block being processed in the message M
and ending with the final hash value H(N) where N is the number of the last
512 bit block in the message M.

 A single temporary word, T. Previously defined constants which are labeled Kt,
where t is the round number.

The calculation is carried out as follows:
The message schedule is prepared, i.e. the message word that is going to be used in

that round is prepared. This computation is done as described in the following formula:
Wt =Mi

t 0≤ t≤15

 Wt =ROTL1(Wt-3 ⊕ Wt-8 ⊕ Wt-14 ⊕ Wt-16) 16≤ t≤79

Nalini C. Iyer & Sagarika Mandal

760

In the above formula Mi
t denotes the tth 32-bit message word of the ith 512-bit

message block in the message M. The 5 working variables A, B, C, D and E that are
going to be used in the computation are prepared as follows:

A = H0 (i-1) , B = H1 (i-1), C = H2 (i-1), D = H3 (i-1) and E = H4 (i-1)

After these initializations, the final values of the working variables for that round
are calculated as described below:

T = S5 (A) + f(t;B,C,D) + E + Wt +Kt , E = D, D = C, C = S30 (B), B = A, A = T

Finally, when all 80 steps have been processed, the following operations are

performed:

H0 ←H0+A
H1 ←H1+B
H2 ←H2+C
H3 ←H3+D
H4 ←H4+E
5. Output: - When all Mi have been processed with the above algorithm, the 160-

bit hash H of M is available in H0, H1, H2, H3 and H4.

4. Verilog Implementation
In this study, SHA-1 is designed on hardware description language Verilog HDL [13].
Separate modules are synthesized and analyzed using Xilinx ISE 14.2 tool. The
Verilog implementation was divided into three modules:

 Initial module:- It accepts a set of text data. Later 512 bits message block is
prepared and broken into 16 32-bit words. Every 32-bit word is used for every
round.

 Round module:- It performs the hashing calculation and operation on the input
message block on previous hash output and generates new hash value.

 Top module:- This module is the control unit of SHA-1 in which the flow of
the algorithm is followed and maintained.

5. Experimental Results and Discussion
Virtex-5 FPGAs offer the best solution for addressing the needs of high performance
logic designers, DSP designers and embedded systems designers with unprecedented
logic, DSP, hard/soft microprocessor and connectivity capabilities. Hash core is fully
described using Verilog HDL on Xilinx ISE software. Target FPGA also belongs to
the same company. This is an advantage since Xilinx ISE software provides full
support for all the code to FPGA processes for Xilinx FPGAs.

The device utilization summary after synthesis of top module using Virtex-5 as
target device is given in Table I. Table II shows the synthesis results for the
implementation. Comparisons of the proposed SHA-1 hash function implementation

Implementation of Secure Hash Algorithm-1 using FPGA 761

with other related works are shown in Table III, from which it is observed that the
proposed work achieves a higher throughput and also higher frequency.

Table 1: Device Utilization Summary after Synthesis
(Virtex5-Xc5vlx50t)

Logic Utilization Used Available Utilization
Number of Slice Registers 2446 28800 8%

Number of Slice LUTs 8202 28800 28%
Number of LUT-FF pairs 422 10226 4%
Number of bonded IOBs 322 480 67%

Number of BUF 1 32 3%

Table 2: Implementation Result of SHA-1
(VIRTEX5-XC5VLX50T)

Parameter Value
Slices 1351

Max. Clock Frequency 124.502MHz
Throughput 786Mbps`

Throughput per Slice(TPS) 0.582Mbps/slice

Table 3: Implementation Comparison Results.

Implementation Frequency
(MHz)

Area
(Slices)

Throughput
(Mbps)

[5]
Virtex-II

117.5

1275

734

[6]
Virtex v200pq240

74

2384

291, (512)
467, (256)

[8]
Spartan-2 XCS-100

106

423

212

[14]
Xilinx XCV1000-6

87

2212

530

Proposed work
Virtex-5 XC5VLX50T

124.502

1351

786

Nalini C. Iyer & Sagarika Mandal

762

6. Conclusion
The proposed design is verified using Xilinx ISE 14.2 tool on software by timing
simulation and is implemented using Virtex-5 XC5VLX50T-1 FPGA hardware. In this
study, Verilog HDL is used to design and capture SHA-1 in Xilinx ISE software
environment. The design is implemented on Xilinx FPGA and results are given as
shown in Table II. For verification, test vectors are used and observed that the design
generates correct hash values. From Table III, the proposed SHA-1 architecture
achieves a higher working frequency and also higher throughput.

References

[1] William Stallings, “Cryptography and Network Security, Principles and

Practices” Fourth E d it io n, 2005.
[2] NIST “SECURE HASH STANDARD”, Federal Information Processing

Standards Publication 180-1, May 1993.
[3] NIST “SECURE HASH STANDARD”, Federal Information Processing

Standards Publication 180-2, August 2002.
[4] Ilya Mironov, “Hash functions: Theory, a t t a c k s and applications”,

Microsoft Research, Silicon Valley Campus, November 14, 2005.
[5] K. Jarvinen, “Design and Implementation of a SHA-1 Hash Module on

FPGAs”, Technical Report, Otakaari 5A, Espoo, Finland, November,
2004.

[6] Dai Zibin and Z ho u Ning, “FPGA Implementation of SHA-1
Algorithm”, IEEE Proceedings, 5th International Conference on ASIC,
2003.

[7] A.P. Kakarountas, G. Theodoridis, T. Laopoulos a nd C . E .Goutis, “High-
Speed FPGA Implementation of the SHA-1 Hash Function”, IEEE Workshop
on Intelligent Data Acquisition and Advanced Computing Systems:
Technology and Applications, Sofia, Bulgaria, 2005.

[8] Guopyin Wang, “An Efficient Implementation of SHA-1 Hash Function”,
IEEE International Conference on Electro or Information Techno logy, pp.
575-579, 2006.

[9] Cheng Xiao-hui and Deng Jian-zhi, “Design of SHA-1 Algorithm based on
FPGA”, IEEE Second International Conference on Networks Security,
Wireless Communications and Trusted Computing, (NSWCTC), Vol-1, pp.
532-534, 2010.

[10] Zhou Hua and Liu Qiao, “Hardware Design for SHA-1 Based on FPGA”,
IEEE International Conference Publications on Electronics,
Communications and Control (ICECC), pp.2076-2078, 2011.

Implementation of Secure Hash Algorithm-1 using FPGA 763

[11] Quynh Dang, “Recommendation for Applications Using Approved Hash
Algorithm”, NIST special publication 800-107, Computer security Division,
National Institute of Standards and Technology, Dept of commerce, USA,
pp. 1-21, 2011.

[12] NIST “Digital Signature Standard”, Federal Information Processing
Standards Publication 186, 1 May 1994.

[13] Samir Palnitkar, “Verilog HDL A Guide to Digital Design and Synthesis”,
2nd Edition, 2003.

[14] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr, T.
Lehman, and B. Schott, “Comparative analysis of the hardware
implementations of hash functions SHA-1 and SHA-512” in Proc. of 5th
International Conference on Information Security (ISC 2002), Sao Paulo,
Brazil, Oct. 2002, pp. 75-89.

Nalini C. Iyer & Sagarika Mandal

764

