Alleviation of Application Layer DDoS Attacks using Data Specification Module

R. Saravanan¹, K. Vigneswari², M. Rajalakshmi² and S. Suria²

¹Assistant Professor, Department of Information Technology, Sri Manakula Vinayagar Engineering College, Pondicherry, India
E-mail: r.saravanan26@gmail.com
²Students, Department of Information Technology, Sri Manakula Vinayagar Engineering College, Pondicherry, India
E-mail: vickykarumbhu@gmail.com, rajeit.90@gmail.com, suriabtech@gmail.com

Abstract

Distribute denial of service (DDoS) attacks can inflict chaos on any susceptible web site. The goal of these attacks is to consume the network bandwidth and reject services to legitimate users of the targeted systems. Hence the client loyalty and buoyancy can be eroded due to annoyance of slow site performance. The attacks at the layer-7 are more harder to alleviate since they deny the service without causing the consumption of available network bandwidth when compared to network layer DDoS attacks. Several mechanisms has been introduce to alleviate application layer DDoS attacks in which the attackers are identified and blocked after reaching the server. Our proposed system has incorporated a module called data specification module in which the attackers are chunked in the client side itself. This can be done by computing the trust of a client based on the threshold value by considering the parameters such as OS name, port number, IP address and Mac address. Thus only the legitimate users can be allowed to send requests and access the service. Thus an attacker can be eliminated in the client side thereby reducing the bandwidth overhead in the server and only the legitimate user is given priority to access the services.

Keywords: Distributed Denial of Service (DDoS) attacks, Trust, Threshold.
Introduction
Distribute denial of service attacks are the attacks in internet in which multiple computers launch a coordinated denial of service attack against one or more targets. The most common DoS attacks will target the computers network bandwidth. The group of systems attack a single target, thereby causing denial of service for users of the targeted system. The flood of incoming requests to the targeted system essentially forces it to shut down, thus denying service to the legitimate users. Bandwidth attacks flood the network with a high volume of traffic such that all available network resources are consumed and legitimate user requests cannot get through. Connectivity attacks flood a computer with such a high volume of connection requests that all available operating system resources are consumed and the computer can no longer process legitimate user requests. The two main classes of DDoS attacks are resource flooding and bandwidth flooding. In resource flooding the attacker consumes victim computer resource (memory, CPU, hard disk) to make it unavailable for legitimate users. In bandwidth flooding the victim network is flood by unwanted traffic to prevent the legitimate traffic from reaching the victim network.

![DDoS attacks in internet](image)

Figure 1: DDoS attacks in internet

APP-LAYER DDoS Attacks
The new variant of DDoS attack is the application layer DDoS attack. Application layer DDoS attack is a DDoS attack that sends out requests following the communication protocol and thus these requests are indistinguishable from legitimate requests in the network layer. Application layer DDoS attacks employ legitimate HTTP requests to flood out victim’s resources. Attackers attacking victim web servers by HTTP GET requests (HTTP flooding) and pulling large image files from victim
server in large numbers. Sometimes attackers can run large number of queries through victim’s search engine or database query and bring the server down the first characteristic of App-DDoS attacks is that the application-layer requests originating from the compromised hosts are indistinguishable from those generated by legitimate users.

Application layer DDoS attacks include session flooding attack, request flooding and asymmetric attack. Session flooding attack sends session connection requests at higher rates than that of legitimate users. Request flooding attack sends sessions that contain more requests than normal sessions. Asymmetric attack sends sessions with higher workload requests. Most of the well known sites are affected by these kinds of attacks. Commercial sites are more vulnerable during the business time as there will be many genuine users accessing it, and attacker needs only a little effort to launch DDoS attack. It is difficult to prevent such attacks from happening and the attackers may continue their damage using new and innovative approaches. These attacks not only send network packets, but they actually complete TCP connections from the attacker to the victim service. Once the TCP connection is made, the attacking computers make repeated requests to the application in an attempt to exhaust the resources of the application, rendering it to unable to respond to all of its requests. These intelligent attacks are harder to defend against because they create denial of service conditions without causing the consumption of available network bandwidth or overloadingouters, firewalls and switches. eg. HTTP request.

Application layer DDoS attacks causes unavailability of resources, revenue loss. The request originating from the compromised hosts are indistinguishable from those generated by legitimate users. Usually app DDoS attacks utilise the weakness enabled by the standard practise of opening services such as http through most firewalls to launch the attack. Many protocols and applications, both legitimate and attacker can use these openings to tunnel through firewalls by connecting over a standard port address.

Related Work
S. Ranjan et al. proposed a counter-mechanism by building legitimate user model for each service and detecting suspicious requests based on the contents of the requests. To protect servers from application layer DDoS attacks, they proposed a counter-mechanism that consist of a suspicion assignment mechanism and DDoS resilient scheduler DDoS shield. The suspicion mechanism assigns continuous value as opposed to a binary measure to each client session, and scheduler utilizes these values to determine if and when to schedule a session’s requests.

M. Srivatsa et el. performed admission control to limit the number of concurrent clients served by the online service. Admission control is based on port hiding that renders the online service invisible to unauthenticated clients by hiding the port number on which the service accepts incoming requests. The mechanism needs a challenge server which can be the new target of DDoS attack.
J. Yu, Z. Li, H. Chen, and X. Chen proposed a mechanism named DOW (Defence an Offence Wall), which defends against layer-7 attacks using combination of detection technology and currency technology. An anomaly detection method based on K-means clustering is introduced to detect and filter request flooding attacks and asymmetric attacks. But this mechanism requires large amount of training data.

Yi Xie and Shun-Zheng Yu introduced a scheme to capture the spatial-temporal patterns of a normal flash crowd event and to implement the App-DDoS attacks detection. Since the traffic characteristics of low layers are not enough to distinguish the App-DDoS attacks from the normal flash crowd event, the objective of their work is to find an effective method to identify whether the surge in traffic is caused by App-DDoS attackers or by normal Web surfers. Web user behaviour is mainly influenced by the structure of Website (e.g., the Web documents and hyperlink) and the way users access web pages. In this paper, the monitoring scheme considers the App-DDoS attack as anomaly browsing behaviour.

Our literature survey has noted that many mechanisms are developed to service legitimate users only. Abnormalities are identified and denied. But large amount of training data is required. Sometimes mitigation mechanism can itself becomes target of DDoS attack. The need is felt to design and develop a new lightweight mechanism that can alleviate both session flooding and requests flooding Application layer DDoS attacks with small amount of training data. It will service all users if and only if resource is available and use bandwidth effectively. It will identify the abnormalities and serve them with different priorities.

Proposed Work

The mechanism used for eliminating the attackers after reaching the server side requires more bandwidth overhead which can reduce the service to slow down. Hence to overcome this problem we proposed a framework in the client side which consists of reacting module and data specification intrusion extraction module where the clients are segregated based on their trust value. The trust of each client can be evaluated based on the threshold value considering the parameters such as Os name, ip address, port number and Mac address. Threshold Value is the number of requests that a server can handle without straining its resources. It is defined as a predetermined percentage of the maximum number of requests that a server can handle.

In this module the attackers are chunked in the client side itself. The data specification modules segregate the clients into positive, negative, untrusted and trusted and are queued in the respective unit. The negative clients whose trust values are too low beyond the threshold value are treated as attacker and are rejected. The rest trusted clients those queued in the units are sent to the next level and they are again validated by using TMH mitigation mechanism in the server side for further verification.
For each session connection request TMH checks whether the client is blacklisted; if not, it computes the trust to the client and schedule the connection request for the server using trust-based scheduling. Fig 2 shows the architecture of the proposed system. When the clients send the request to the browser it reaches the reacting module which decides whether the client can be sent to the next level or filtered.

Reacting Module

The reacting module in the client machine Fig 1 decides whether the request has to be sent to next level or to be filtered. This filtration process is done with the help of the Data Cleansing technique. This module will verify the legacy data which are provided by the users are correct and forwards the requests to the next level. During this process, the data is checked for accuracy and consistency. The filtration process involves the following:

- Checks for inaccurate record or data
- Checks for typos or spelling errors
- Checks for obsolete records or data
- Checks for incomplete records or data

Negative Data Unit

Negative Data Cleansing Unit stores the requests whose trust value is too low when compared to the Threshold value as shown in Graph 1.
Graph 1: Negative Data Cleansing Unit

It is defined as a predetermined percentage of the maximum number of requests that a server can handle. The system will treat these requests as attackers and reject their request. The queued request in the negative data cleansing unit cannot be moved further to access the service which it requests. The negative data cleansing unit contains also contains unidentified untrusted data unit.

Unidentified Untrusted Data Unit
Unidentified Untrusted Data Unit is used to queue the client request which cannot be identified by the Reacting module whether they are legitimate requests or attacks. The client may ask for the proper service but the trust value does not meet with the threshold value. Those client requests are queued in this unit. The queued request is further moved to the next level. Thus the queued requests in this unit can able to access the service which it requested.

Graph 2: Unidentified Untrusted Data Unit

Positive Data Cleansing Unit
The Trust value of the client is greater than the threshold then that client requests are
queued into the Positive Data Cleansing unit. The Positive Data Cleansing unit also contains the unidentified trusted data that is the user cannot be identified by the Reacting module whether the client is legitimate user or not. Since the user action is trusted, so that types of requests are queued into this unit.

Graph 3: Positive Data Unit

Unidentified Trusted Data Unit
The client requests which are queued in the Positive Data Cleansing unit, Unidentified trusted data and the unidentified untrusted data are then transferred to the next level i.e. to TMH for further verification. The TMH in the server side will again calculate the trust value of the client requests for deciding about the legitimate user or not. By evaluating the user request in the client side using the Data Intrusion Extraction Module the bandwidth overhead is reduced.

Graph 4: Unidentified Trusted Data Unit

Conclusion
This paper presents a framework for detecting direct DDoS attacks. The system consists of a client detector and a server detector. The TMH in the server side is used detect for further verification that can both passively and actively detect DDoS
attacks. In order to monitor the behaviour of the client machine various queuing
techniques are followed. Thus this helps us to reduce the bandwidth as well as the
workload of the server.

Then, a mechanism named as Data Intrusion Extraction modules which defends
against the attacks of the various users. The users are also categorized into four types
and the access is given based on that types. Only the legitimate users are allowed to
access the service. Using this technique the network overhead and the bandwidth of
the server will be reduced. Our further work is to implement our mechanism and
deploy it in real network.

References

[1] Jie Yu, Chengfang Fang, Liming Lu, Zhoujun Li. Lightweight Mechanism to
alleviate Application layer DDoS attacks. In 4th International ICST conference,
INFOSCALE 2009.
DDoS Shield: DDoS-Resilient Scheduling to Counter Application Layer DDoS
of service attacks on Web servers: A client-transparent approach. ACM
Application-layer DDoS Attacks for Networks. In IJCSIS Vol. 8 No. 3, June
2010.
Attacks for Popular Websites. In IEEE/ACM Transactions On Networking, Vol. 17,
No. 1, 2009.
to Counter Application Layer Attacks Under Imperfect Detection'. Proc.
Infocom'06, 2006
Sharing Systems'. Proc. Infocom'06, 2006
Defence by Offense'. Proc. Sigcomm'06, 2006
Of Service Attacks Via Effective Trust Management'. ProcIssn 1751-8628,
2009
Trust And AM Based HMM Models’. Proc Sep 2010
Websites', Ieee/AcmTrans Netw.’ 2009, 17, (1), Pp. 15-25