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Abstract 
 

In this paper, novel fuzzy neural networks (FNNs) combining with support 
vector learning mechanism called support-vector-based fuzzy neural networks 
(SVFNNs) are proposed for pattern classification and function approximation. 
The SVFNNs combine the capability of minimizing the empirical risk 
(training error) and expected risk (testing error) of support vector learning in 
high dimensional data spaces and the efficient human-like reasoning of FNN 
in handling uncertainty information. A learning algorithm consisting of three 
learning phases is developed to construct the SVFNNs and train the 
parameters. In the first phase, the fuzzy rules and membership functions are 
automatically determined by the clustering principle. In the second phase, the 
parameters of FNN are calculated by the SVM and SVR with the proposed 
adaptive fuzzy kernel function for pattern classification and function 
approximation, respectively. In the third phase, the relevant fuzzy rules are 
selected by the proposed fuzzy rule reduction method. To investigate the 
effectiveness of the proposed SVFNNs, they are applied to the Iris and 
Vehicle datasets for classification, and one- and two- variable functions for 
approximation, respectively. Experimental results show that the proposed 
SVFNNs can achieve good pattern classification and function approximation 
performance with drastically reduced number of fuzzy kernel functions (fuzzy 
rules).  
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machine, support vector regression, pattern classification, function 
approximation.  

 
 
Introduction 
It is an important key issue in many scientific and engineering fields to classify the 
acquired data or estimate an unknown function from a set of input-output data pairs. 
As is widely known, fuzzy neural networks (FNNs) have been proposed and 
successfully applied to solving these problems such as classification, identification, 
control, pattern recognition, and image processing, etc [1]-[4]. A fuzzy system 
consists of a bunch of fuzzy if-then rules. Conventionally, the fuzzy if-then rules were 
usually derived from human experts as linguistic knowledge. Obviously, it is not 
always easy to derive fuzzy rules from human experts or to examine all the input-
output data to find a number of proper rules for the fuzzy system. So, most previous 
researches issue the method of automatically generating fuzzy rules from numerical 
data and use the backpropagation (BP) and/or C-cluster type learning algorithms to 
train parameters of fuzzy rules and membership functions from the training data [5], 
[6]. However, such learning algorithm only aims at minimizing the training error, and 
it cannot guarantee the lowest testing error rate in the testing phase. In addition, the 
local solutions and slow convergence often impose practical constraints in the 
function approximation problems [7].  
 In statistical learning theory, the support vector machine (SVM) [8] has been 
developed for solving these bottlenecks. SVM performs structural risk minimization 
and creates a classifier with minimized Vapnik Chervonenkis (VC) dimension [9]. As 
the VC dimension is low, the expected probability of error is low to ensure a good 
generalization. When SVM is employed to tackle the problems of function 
approximation and regression estimation, it is referred as the support vector regression 
(SVR) [10]. SVR can perform high accuracy and robust properties for function 
approximation with noise [11]. Some researches have been done on combining SVM 
with FNN [12]-[15]. In [12], the support vector learning mechanism provides the 
architecture to extract support vectors for generating fuzzy IF-THEN rules from the 
training data set. This method provides reliable performance in the cases of 
prediction. In [13], a self-organizing map with fuzzy class memberships is used to 
reduce the training samples to speed up the SVM training. The methods in [14]-[15] 
improve the accuracy of multi-class pattern recognition and regression estimation 
problems and reduce the influence of noises. However, the regular SVM and SVR 
suffer from the difficulty of long computational time in using nonlinear kernels on 
large datasets which come from many real applications.  
 In this paper, novel support-vector-based fuzzy neural networks (SVFNNs) which 
integrate the statistical support vector learning method into FNN and exploit the 
knowledge representation power and learning ability of the FNN to determine the 
kernel functions of the SVM/SVR adaptively are proposed. The SVFNNs combine the 
capability of minimizing the empirical risk (training error) and expected risk (testing 
error) of support vector learning in high dimensional data spaces and the efficient 
human-like reasoning of FNN in handling uncertainty information. In addition, we 
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also propose a novel adaptive fuzzy kernel function, which has been proven to be a 
Mercer kernel, to bring the advantages of FNNs (such as adaptive learning and 
economic network structure) to SVM/SVR. The use of the proposed fuzzy kernels 
provides the SVM/SVR with adaptive local representation power such that the 
number of support vectors can be further reduced. The proposed learning algorithm 
consists of three learning phases to construct and train the SVFNNs. In the first phase, 
the fuzzy rules and membership functions are automatically determined based on the 
fuzzy clustering method. In the second phase, the parameters of FNN are calculated 
by the SVM and SVR with the proposed adaptive fuzzy kernel function for pattern 
classification and function approximation, respectively. In the third phase, the 
relevant fuzzy rules are selected by the proposed fuzzy rule reduction method. The 
proposed SVFNNs are applied to the Iris and Vehicle datasets for classification and 
one- and two-variable functions for approximation. Experimental results show that the 
proposed SVFNNs can automatically generate the fuzzy rules, improve the accuracy 
of pattern classification and function approximation, reduce the number of required 
kernel functions, and increase the speed in test phase.  
 The rest of this paper is organized as follows. Section II describes the structure 
and initial construction of SVFNNs. The learning algorithm of SVFNNs is developed 
in Section III. In Section IV, performance comparisons between SVFNNs and other 
classification and function approximation methods are made. Finally, the conclusions 
are summarized in Section V. 
 
 
Structure and Construction of Initial Fuzzy Neural Network 
Structure of Fuzzy Neural Network 
The proposed SVFNN is a four-layered FNN that is comprised of the input, 
membership function, fuzzy rules, and output layers as shown in Fig.1. Layer 1 
accepts input variables, whose nodes represent input linguistic variables. Layer 2 is to 
calculate the membership values, whose nodes represent the terms of the respective 
linguistic variables. Nodes at Layer 3 represent fuzzy rules. The links before Layer 3 
represent the preconditions of fuzzy rules, and the links after Layer 3 represent the 
consequences of fuzzy rules. Layer 4 is the output layer. This four-layered network 
realizes the following form of fuzzy rules:  
  Rule Rj: IF x1 is A1j and …xi is Aij….. and xM is AMj, 

  THEN y is dj , j=1, 2, …, N, (1) 
 
where Aij are the fuzzy sets of the input variables xi, i =1, 2, …, M and dj are the 
consequent parameter of y. For the ease of analysis, a fuzzy rule 0 is added as:  
  Rule 0: IF x1 is A10 and … and xM is AM0,  
  THEN y is d0,  (2) 
 
where Ak0 is a universal fuzzy set, whose fuzzy degree is 1 for 



34  Chin-Teng Lin et al 
 

 

 
 

Figure 1: The structure of the four-layered fuzzy neural network. 
 

 
any input value xi, i =1, 2, …, M and d0 is the consequent parameter of y in the fuzzy 
rule 0. Define O(P) and a(P) as the output and input variables of a node in layer P, 
respectively. The signal propagation and the basic functions in each layer are 
described as follows.  
 
Layer 1 – Input layer: No computation is done in this layer. Each node in this layer, 
which corresponds to one input variable, only transmits input values to the next layer 
directly. That is  
  (1) (1)

i iO a x= = , (3)  
 
where xi, i=1, 2, …, M are the input variables of the FNN.  
 
Layer 2 – Membership function layer: Each node in this layer is a membership 
function that corresponds one linguistic label ( e.g., fast, slow, etc.) of one of the input 
variables in Layer 1. In other words, the membership value which specifies the degree 
to which an input value belongs to a fuzzy set is calculated in Layer 2:  
  (2) ( ) (2)( )j

i iO u a= , (4)  
 
where ui

(j)=(⋅) is a membership function ui
(j)=(⋅):R→[0, 1], i=1, 2, ⋅⋅⋅, M, j=1, 2, …, N. 

With the use of Gaussian membership function, the operation performed in this layer 
is  

  
( 2) 2

2

( )

(2)
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ij

a m
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−
−

= , (5)  
 
where mij and σij are, respectively, the center (or mean) and the width (or variance) of 
the Gaussian membership function of the j-th term of the i-th input variable xi.  
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Layer 3 – Rule layer: A node in this layer represents one fuzzy logic rule and 
performs precondition matching of a rule. Here we use the AND operation for each 
Layer 2 node 

   [ ( )] [ ( )](3) (3)

1

T
j j j j

M

i
i

O a e−
=

= =∏ D x-m D x-m , (6)  

 
where Dj=diag[1/σ1j, ⋅⋅⋅, 1/σMj], mj=[m1j, m2j, …, mMj]T, x=[x1, x2, x3, …, xM]T is the 
FNN input vector of FNN. The output of a Layer-3 node represents the firing strength 
of the corresponding fuzzy rule.  
 
Layer 4 – Output layer: The single node O(4) in this layer is labeled with Σ, which 
computes the overall output and can be computed as:  

  (4) (4)
0

1

N

j j
j

O d a d
=

= × +∑ , (7)  

 
where the connecting weight dj is the output action strength of the Layer 4 output 
associated with the Layer 3 rule, and the scalar d0 is a bias. Thus the fuzzy neural 
network mapping can be rewritten in the following input-output form: 

  (4) (4) ( )
0 0

1 1 1

( )
MN N

j
j j j i i

j j i

O d a d d u x d
= = =

= × + = +∑ ∑ ∏ . (8) 

 
 
Construction of Fuzzy Rules 
In order to construct the initial fuzzy rules of FNN, the fuzzy clustering method is 
used to partition a set of data into a number of overlapping clusters based on the 
distance in a metric space between the data points and the cluster prototypes. Each 
cluster in the product space of the input-output data represents a rule in the rule base. 
In this study, the aligned clustering-based approach proposed in [16] is used to 
partition a set of data to establish the fuzzy preconditions in the rules.  
 In the classification problem, the training set is S = {(x1, y1), (x2, y2), …, (xv, yv)} 
with explanatory variable xi and the corresponding binary class labels yi∈{-1,+1}, for 
all i=1, ⋅⋅⋅, v, where v is the number of data. We use a clustering method which takes 
care of both the input and output values of a data set to satisfy the aforementioned 
conditions. That is, the clustering is done based on the fact that the points lying in a 
cluster also belong to the same class or have an identical value of the output variable. 
The class information of input data is only used in the training stage to generate the 
clustering-based fuzzy rules; however, in the testing stage, the input data excite the 
fuzzy rules directly without using class information. In addition, we also allow 
existence of overlapping clusters, with no bound on the extent of overlap, if two 
clusters contain points belonging to the same class. Thus a point may be geometrically 
closer to the center of a cluster, but it can belong only to the nearest cluster, which has 
the points belonging to the same class as that point. In the function approximation 
problem, the Cartesian product-space of the input and output is applied to the 
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clustering algorithm [17]. The training samples are partitioned into characteristic 
regions where the system behaviors are approximated. The input data set is formed by 
combining the input vector x=[x1, x2, x3, …, xM]T and the corresponding output value 
yi.  
 Based on the clustering-based approach to construct initial fuzzy rules of FNN, 
first the input datasets are partitioned. For each incoming pattern b, 

  
⎩
⎨
⎧

=
dataset,regressionfor  ];[
dataset,tion classificafor           

Tyx
x

b  (9) 

 
the strength a rule is fired can be interpreted as the degree the incoming pattern 
belongs to the corresponding cluster. A rule corresponds to a cluster in the input 
space, with mj and Dj representing the center and variance of that cluster. We can use 
the firing strength derived in (6) directly as this degree measure 

  [ ( )] [ ( )](3)

1

( ) −

=

= =∏
T

j j j j
M

j
i

i

F a e D b-m D b-mb  ]1,0[∈ , (10) 

 
where Fj(b)∈[0, 1]. In the above equation the term [Dj(b-mj)]T[Dj(b-mj)] is the 
distance between b and the center of cluster j. Using this measure, we can obtain the 
following criterion for the generation of a new fuzzy rule. Let b be the newly 
incoming pattern. Find  
  

1 ( )
arg max ( )

≤ ≤
= j

j c t
J F b , (11) 

 
where c(t) is the number of existing rules at time t. If FJ ≤ F(t), then a new rule is 
generated, where F(t)∈(0, 1) is a prespecified threshold that decays during the 
learning process. Once a new rule is generated, the next step is to assign initial centers 
and widths of the corresponding membership functions. Since our goal is to minimize 
an objective function and the centers and widths are all adjustable later in the 
following learning phases, it is of little sense to spend much time on the assignment of 
centers and widths for finding a perfect cluster. Hence we can simply set 
  [ ( ) 1]+ =c tm b ,  (12) 
  

[ ( ) 1]
1 1 1

ln( ) ln( )c t J Jdiag
F Fχ+

⎡ ⎤−
= ⋅ ⎢ ⎥

⎣ ⎦
D L , (13) 

 
according to the first-nearest-neighbor heuristic [18], where χ ≥ 0 decides the overlap 
degree between two clusters. Similar methods are used in [19], [20] for the allocation 
of a new radial basis unit. However, in [19] the degree measure doesn’t take the width 
Dj into consideration. In [20], the width of each unit is kept at a prespecified constant 
value, so the allocation result is, in fact, the same as that in [20]. In this paper, the 
width is taken into account in the degree measure, so for a cluster with larger width 
(meaning a larger region is covered), fewer rules will be generated in its vicinity than 
a cluster with smaller width. This is a more reasonable result. Another disadvantage 
of [20] is that another degree measure (the Euclidean distance) is required, which 
increases the computation load. 
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 After a rule is generated, the next step is to decompose the multidimensional 
membership function formed in (12) and (13) to the corresponding 1-D membership 
function for each input variable. To reduce the number of fuzzy sets of each input 
variable and to avoid the existence of highly similar ones, we should check the 
similarities between the newly projected membership function and the existing ones 
in each input dimension. Before going to the details on how this overall process 
works, let us consider the similarity measure first. Since Gaussian membership 
functions are used in SVFNN, we use the formula of the similarity measure of two 
fuzzy sets with Gaussian membership functions derived previously in [19]. Suppose 
that the fuzzy sets to be measured are fuzzy sets A and B with membership function 
μA(x)=exp{-(x-c1)2/σ1

2} and μB(x)=exp{-(x-c2)2/σ2
2}, respectively. The union of two 

fuzzy sets A and B is a fuzzy set A∪B such that μA∪B(x)=max[uA(x), uB(x)], for every 
x U∈ . The intersection of two fuzzy sets A and B is a fuzzy set A∩B such that 
μA∩B(x)=min[uA(x), uB(x)], for every x∈U. The size or cardinality of fuzzy set A, 
M(A), equals the sum of the support values of A: M(A)=ΣuA(x), for x∈U. Since the 
area of the bell-shaped function, exp{-(x-m)2/σ2}, is σ π  and its height is always 1, it 
can be approximated by an isosceles triangle with unity height and the length of 
bottom edge 2σ π . We can then compute the fuzzy similarity measure of two fuzzy 
sets with such kind of membership functions. Assume c1 ≥ c2 as in [21], we can 
compute M|A∩B| by 

  

2
2 1 1 2

1 2

2 2
2 1 1 2 2 1 1 2

2 1 1 2

( )1(min[ ( ), ( )])
2 ( )

( ) ( )1 1
2 2( ) ( )

A B
x U

h c c
M A B u x u x

h c c h c c

π σ σ

π σ σ

π σ σ π σ σ

π σ σ π σ σ

∈

⎡ ⎤− + +⎣ ⎦∩ = = +
+

⎡ ⎤ ⎡ ⎤− + − − − +⎣ ⎦ ⎣ ⎦+
− −

∑  (14) 

 
where h(⋅)=max{0, ⋅}. So the approximate similarity measure is 
  

1 2

( , )
M A B M A B

E A B
M A B M A Bσ π σ π

∩ ∩
= =

∪ + − ∩
, (15) 

 
where we use the fact that M(A)+M(B)=M(A∩B)+M(A∪B) [21]. By using this 
similarity measure, we can check if two projected membership functions are close 
enough to be merged into one single membership function μC(x)=exp{-(x-c3)2/σ3

2}. 
The mean and variance of the merged membership function can be calculated by 

  1 2
3 2

c cc +
= , (16) 

  1 2
3 2

σ σσ +
= . (17) 

 
 The detailed learning algorithm is given in next section. 
 
 
Learning Algorithm 
The proposed learning algorithm of SVFNN consists of three phases. In the first 



38  Chin-Teng Lin et al 
 

 

phase, the initial fuzzy rule (cluster) and membership of network structure are 
automatically established based on the fuzzy clustering method. The input space 
partitioning determines the initial fuzzy rules, which is used to determine the fuzzy 
kernels. In the second phase, the means of membership functions and the connecting 
weights between layer 3 and layer 4 of SVFNN (see Fig. 1) are optimized by using 
the result of the support vector learning method with the fuzzy kernels for pattern 
classification and function approximation, respectively. In the third phase, 
unnecessary fuzzy rules are recognized and eliminated and the relevant fuzzy rules are 
determined. 
 
Learning Phase 1 – Establishing initial fuzzy rules  
The first phase establishes the initial fuzzy rules. The input space partitioning 
determines the number of fuzzy rules extracted from the training set and also the 
number of fuzzy sets. We use the centers and widths of the clusters to represent the 
rules. To determine the cluster to which a point belongs, we consider the value of the 
firing strength for the given cluster. The highest value of the firing strength 
determines the cluster to which the point belongs. The whole algorithm of SVFNN for 
the generation of new fuzzy rules as well as fuzzy sets in each input variable is as 
follows. Suppose no rules are existent initially.  
 In the above algorithm, σinit is a prespecified constant, c(t) is the rule number at 
time t, χ decides the overlap degree between two clusters, and the threshold Fin 
determines the number of rules generated. For a higher value of Fin, more rules are 
generated and, in general, a higher accuracy is achieved. The value ρ(t) is a scalar 
similarity criterion, which is monotonically decreasing such that higher similarity 
between two fuzzy sets is allowed in the initial stage of learning. The pre-specified 
values are given heuristically. In general, the threshold Fin = 0.35, prespecified 
constant σinit = 0.5, the overlap degree χ = 2. In addition, after we determine the 
precondition part of fuzzy rule, we also need to properly assign the consequence part 
of fuzzy rule. For pattern classification, we define two output nodes for doing two-
cluster recognition. If output node 1 obtains higher exciting value, we know this 
input-output pattern belongs to class 1. Hence, initially, we should assign the proper 
weight wCon-1 for the consequence part of fuzzy rule. Another parameter in (7) that 
needs concern is the weight dj associated with each αj

(4). It is presented in Learning 
Phase 2 to show how we can use the results to determine these weights. 
 

IF b is the first incoming input pattern THEN do 
PART 1. {Generate a new rule with center ml=b 
and 
 width D1=diag[1/σinit, ⋅⋅⋅, 1/σinit], 
 IF b is the classification dataset 
 { IF the output pattern y belongs to class 1 
 (namely, y=[1 0]), 
 {wCon-1=[1 0] for indicating output node 1 
 been excited, } 
 ELSE { wCon-1=[0 1] for indicating output 
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 node 2 been excited.}} 
 } 
ELSE for each newly incoming input b, do 
PART 2. {Find J=arg(max Fj(b), for 1 ≤ j ≤ c(t)) 
as defined in (10). 
 IF (wCon-J ≠ y for classification) or 
 (FJ ≤ Fin(t) for regression) 
{ set c(t+1)=c(t)+1 and generate a new fuzzy 
rule, 
 with mc(t+1)=b and  
Dc(t+1)=(-1/χ)diag(1/ln(FJ), ⋅⋅⋅, 1/ln(FJ)), 
 where χ decides the overlap degree between 
 two clusters. The wCon-c(t+1)=y for classification. 
In addition, after decomposition, we have mnew-

i=bi,  
σnew-i=-χ×ln(FJ), i=1, ⋅⋅⋅,M. Do the following 
fuzzy measure for each input variable i: 
 {Degree(i, t)≡max1 j ki(E[μ(mnew-i, σnew-i), μ(mij, 
σij)]), 
where E(⋅) is defined in (15). 
 IF Degree(i, t) ≤ ρ(t)  
THEN adopt this new membership function, 
and set ki=ki+1, where ki is the number of 
partitions of the ith input variable. 
ELSE merge the new membership function 
with closest one 

2
new i closest

new i closest
m mm m −

−

+
= = , 

2
σ σσ σ −

−
+

= = new i closest
new i closest . 

 } } 
 ELSE 
{IF FJ ≤ Fin(t) for classification 
{generate a new fuzzy rule with mc(t+1)=b, 
Dc(t+1)=(-1/χ)diag(1/ln(FJ), ⋅⋅⋅, 1/ln(FJ)), and the 
 respective consequent weight wCon-c(t+1)=y. 
In addition, we also need to do the fuzzy measure 
for each input variable i. 
} } } 

 
 
Learning Phase 2 - Calculating the parameters of SVFNN 
Through above method, the initial structure of SVFNN is established. If SVFNN is 
applied to pattern classification, we can then use the SVM method [22] to find the 
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optimal parameters of SVFNN that can solve classification problem. The dual 
quadratic optimization of SVM [23] is solved in order to obtain an optimal hyperplane 
for any linear or nonlinear space: 

  maximize ∑ ∑
= =

−=
v

i

v

ji
jijijii KyyL

1 1,
),(

2
1)( xxαααα

r  

  subject to 0 ≤ αi ≤ C, i=1, 2, ⋅⋅⋅, v, and ∑
=

=
v

i
iiy

1
,0α   (18) 

 
where K(xi,xj) is the fuzzy kernel that is defined as [24] 
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0,                            otherwise, 
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j i j i
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u x u z j
K

⎧
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⎪⎩

∏ x z
x z

$
$

  (19) 
 
where x̂ =[x1, x2, x3, …, xM] ∈RM and ẑ =[z1, z2, z3, …, zM] ∈RM are any two training 
samples, and uj(xi) is the membership function of the j-th cluster, and C is a user-
specified positive parameter to control the tradeoff between complexity of SVM and 
the number of nonseparable points. This quadratic optimization problem can be 
solved and a solution 0α

r
=(α1

0, α2
0, ⋅⋅⋅, αnsv

0) can be obtained, where αi
0 are Lagrange 

coefficients, and nsv is the number of support vectors. The corresponding support 
vectors sv=[sx1, sx2, ⋅⋅⋅, sxi, ⋅⋅⋅, sxnsv] can be obtained, and the constant (threshold) d0 
in (7) is 

  ( ) ( )* *
0 0 0

1 (1) ( 1)
2

d w x w x⎡ ⎤= ⋅ + ⋅ −⎣ ⎦
 with

0
1

nsv

i i i
i

w y xα
=

=∑ ,  (20) 

 
where the support vector x*(1) belongs to the first class and support vector x*(-1) 
belongs to the second class. 
 If SVFNN is applied to function approximation, the optimal parameters of 
SVFNN are trained by using the ε-insensitivity loss function SVR [22] based on the 
fuzzy kernels [24]. The dual quadratic optimization of SVR [23] is solved in order to 
obtain an optimal hyperplane for any linear or nonlinear space: 

  maximize ∑ ∑
= =

−++−=
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i

v

i
iiiii yL
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subject to constraints  

  ∑ ∑
= =

=
v

i

v

i
ii

1 1

* αα , 0 ≤ αi
* ≤ C, 0 ≤ αi ≤ C, i=1, 2, ⋅⋅⋅, v,  (21) 

 
where K(xi,xj) is the fuzzy kernel that is defined as [24], ε is a previously chosen 
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nonnegative number ε for ε-insensitive loss function, and C is a user-specified 
positive parameter to control the tradeoff between complexity of SVR and the number 
of nonseparable points. This quadratic optimization problem can be solved and a 
solution ( )1 2, , ....., nsvα α α α=

ur  and ( )* * * *
1 2, , ....., nsvα α α α=

ur  can be obtained, where αi and 

αi
* are Lagrange coefficients. The corresponding support vectors sv=[sx1, sx2, ⋅⋅⋅, sxi, 

⋅⋅⋅, sxnsv] can be obtained, and the constant (threshold) d0 in (7) is 

  0 0
1

1 ( ( ))
v

T
i i

i
d y

v =

= −∑ x w  with *
0

1

( )
nsv

i i i
i

α α
=

= −∑w x ,  (22) 

 
 Hence, the fuzzy rules of SVFNN are reconstructed by using the results of the 
SVM and SVR learning with fuzzy kernels, for pattern classification and function 
approximation, respectively. The means and variances of the membership functions 
can be calculated by the values of support vector mj=sxj, j=1, 2, …, nsv, in (5) and (6) 
and the variances of the multidimensional membership function of the cluster that the 
support vector belongs to, respectively. The coefficients dj in (7) corresponding to 
mj=sxj can be calculated by dj=yj(αj

*-αj). In this phase, the use of variable-width 
fuzzy kernels makes SVM and SVR more efficient in terms of the number of required 
support vectors, which are corresponding to the fuzzy rules in SVFNN. 
 
Learning Phase 3 – Removing irrelevant fuzzy rules 
In this phase, the number of fuzzy rules learning in Phases 1 and 2 is reduced by 
removing some irrelevant fuzzy rules and the consequent parameters of the remaining 
fuzzy rules is retuned under the condition that the accuracy of SVFNN for pattern 
classification or function approximation is kept almost the same. The method reduces 
the number of fuzzy rules by minimizing the distance measure between original fuzzy 
rules and reduced fuzzy rules without losing the generalization performance. To 
achieve this goal, we rewrite (8) as 
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where N is the number of fuzzy rules after Learning phases 1 and 2. Now we try to 
approximate it by the expansion of a reduced set: 
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where Rz is the number of reducing fuzzy rules with N > Rz, βq is the consequent 
parameters of the remaining fuzzy rules, and miq

Re and σiq
Re are the mean and variance 

of reducing fuzzy rules and mq
Re =[ m1q

Re, m2q
Re, ⋅⋅⋅, mMq

Re,]T. For choosing the more 
important Rz fuzzy rules from the old N fuzzy rules, the approximation in (24) can be 
achieved by computing a whole sequence of reduced set approximations [25] 

  Re(4) Re(4)

1

r

r q q
q

O aβ
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= ×∑ , (25) 

 
for r=1, 2, …, RZ. Then, the mean and variance parameters, mq

Re and σq
Re, in the 

expansion of the reduced fuzzy-rule set in (24) can be obtained by the following 
iterative optimization rule [25]: 
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 According to (26), we can find the parameters, mq

Re and σq
Re, corresponding to 

the first most important fuzzy rule and then remove this rule from the original fuzzy 
rule set represented by mj, j=1, 2, …, N and put (add) this rule into the reduced fuzzy 
rule set. Then the procedure for obtaining the reduced rules is repeated. The optimal 
coefficients βq, q=1, 2, ⋅⋅⋅, Rz, are then computed to approximate O(4)=Σ(dj×aj), for 
j=1, ⋅⋅⋅, N, by ORe(4)=Σ(βq×aq

Re) [25], for q=1, ⋅⋅⋅, Rz, and can be obtained as 
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and 
  1 2[ , , , ]Nd d dΘ = L .  (30)
  
 The whole learning scheme is iterated until the new rules are sufficiently sparse. 
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Experimental Results and Discussions 
In order to evaluate the performance of the proposed SVFNNs, we apply SVFNNs to 
the Iris dataset from UCI repository [26] and the Vehicle dataset from Statlog 
collection [27] for classification, and the one- and two- variable functions for 
approximation, respectively. 
 
Pattern Classification 
The Iris dataset is originally a collection of 150 samples belonging to three classes. 
The Vehicle dataset consists of 846 samples belonging four classes. Because the Iris 
and Vehicle datasets do not contain testing data explicitly, we divide the whole data in 
Iris and Vehicle datasets into two halves as the training and testing datasets, 
respectively. 
 Tables 1 and 2 show the classification accuracy rates and the number of used 
fuzzy rules (i.e., support vectors) in the SVFNN applied to the Iris and Vehicle 
datasets, respectively. The criterion of determining the number of reduced fuzzy rules 
is the difference of accuracy values before and after reducing one fuzzy rule. If the 
difference is larger than 0.5%, meaning that some important support vector has been 
removed, then we stop the rule reduction. The generalized accuracy is estimated by 
using different cost parameters C=[212, 211, 210, …, 2-2] in (18). We apply 2-fold 
cross-validation for 100 times on the whole training data in the Iris and Vehicle 
datasets and then average all the results. The cost parameter C that results in the best 
average cross-validation rate for SVM training is chosen to predict the test set. In 
Table 1, the proposed SVFNN is verified by using the Iris dataset, where the constant 
n in the symbol SVFNN-n means the number of the learned fuzzy rules. It uses 
fourteen fuzzy rules and achieves an error rate of 2.6% on the training data and an 
error rate of 4% on the testing data. When the number of fuzzy rules is reduced to 
seven, its error rate is increased to 5.3%. When the number of fuzzy rules is reduced 
to four, its error rate is increased to 13.3%. Continuously decreasing the number of 
fuzzy rules will keep the error rate increasing. In Table 2, the proposed SVFNN is 
verified by using the Vehicle dataset and we have the similar experimental results as 
those in Table 1. 

 
Table 1: Experimental results of SVFNN classification on the Iris dataset. 

 
SVFNN-n (SVFNN with n fuzzy 
rules) 

Training 
process 

Testing process 

Error rate C Number of 
misclassification 

Error 
rate 

SVFNN-14 2.6% 212 3 4% 
SVFNN-11 2.6% 212 3 4% 
SVFNN-9 2.6% 212 3 4% 
SVFNN-7 4% 212 4 5.3% 
SVFNN-4 17.3% 212 10 13.3% 
1. Input dimension is 4. 
2. The number of training data is 75. 
3. The number of testing data is 75. 
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Table 2: Experimental results of SVFNN classification on the Vehicle dataset. 
 

SVFNN-n (SVFNN with n fuzzy 
rules) 

Training 
process 

Testing process 

Error rate C Number of 
misclassification 

Error 
rate 

SVFNN-321 13.1% 211 60 14.2% 
SVFNN-221 13.1% 211 60 14.2% 
SVFNN-171 13.1% 211 60 14.2% 
SVFNN-125 14.9% 211 61 14.5% 
SVFNN-115 29.6% 211 113 26.7% 
1. Input dimension is 18. 
2. The number of training data is 423. 
3. The number of testing data is 423. 

 
 

Table 3: Classification error rate comparisons among FNNs, RBF-kernel-based 
SVM, RSVM and SVFNN classifiers, where NA means “not available”. 
 
Datasets FNN [28, 29] RBF-kernel-based 

SVM [30] 
RSVM [31] SVFNN 

FUZZY 
RULES 

Error 
rate 

support 
vectors 

Error 
rate 

support 
vectors 

Error 
rate 

Fuzzy 
rules 

Error 
rate 

Iris NA 4.3% 16 3.3% 14 4% 7 5.3% 
Vehicle NA 29.9% 343 13.4% 198 14% 125 14.5% 
 
 
 The performance comparisons among the existing fuzzy neural network classifiers 
[28], [29], the RBF-kernel-based SVM (without support vector reduction) [30], 
reduced support vector machine (RSVM) [31] and the proposed SVFNNs are made in 
Table 3. 
 These results indicate that the testing error rates of SVFNN are lower than FNN 
classifiers [28], [29], and the SVFNN uses less support vectors as compared to the 
regular SVM using fixed-width RBF kernels [30]. As compared to RSVM [31], the 
proposed SVFNN can not only achieve high classification accuracy, but also reduce 
the number of support vectors quit well. For FNN and SVM, the computational cost 
depends on the number of the rules (FNN) and the number of the support vectors 
(SVM), respectively. According to Table 3, it can be found that the computational 
cost of the proposed SVFNN is less than the regular SVM and RSVM in testing stage. 
 We also perform a receiver operating characteristic (ROC) analysis [32]-[34] to 
evaluate the assessing performance of the proposed SVFNNs for pattern classification 
as shown in Fig. 2. The ROC curve is a plot of the classification sensitivity (i.e. true 
positive rate) as the ordinate versus the specificity (i.e. false positive rate) as the 
abscissa. It is obtained by continuously varying the threshold associated with its 
decision function. In an ideal condition, if the area under the ROC curve is equal to 1, 
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it shows the best performance. In Fig. 2, the area under the ROC curve is 0.92. This 
result shows that the SVFNNs can perform good classification performance. 

 

 
 

Figure 2: The ROC analysis of the SVFNN for the classification problem. 
 
 

Function Approximation 
The SVFNN is verified by the one- and two-variable functions for approximation 
problems. These two functions have been widely used in the literature [35]-[36]. The 
first function is a one-variable function defined as  

  (1) 2/3( )f x x=  with ]2,2[−∈x . (31) 
 
 The second function is a two-variable Gaussian function defined as 
  (2) 2 2( , ) exp{ 2( )}f x y x y= − +  
 
with  
  ]1,1[−∈x , ]1,1[−∈y . (32) 
 
 
Plots of these two functions are shown in Figs. 3(a) and 4 (a). 
There are two sets of training data for each function. One is noiseless and the other is 
noisy. In the first function, the noiseless training set has 50 points that are generated 
by randomly selecting, where x∈[-2, 2]. The testing set has 200 points that are 
randomly generated by the same function in the same range. In the second function, 
the 150 training examples are generated by randomly selecting, where x∈[-1, 12], 
y∈[-1, 1]. The testing set has 600 points that are randomly generated by the same 
function in the same range. The noisy training sets are generated by adding 
independent and identically distributed (i.i.d.) Gaussian noise, with zero mean and 
0.25 standard deviation, to the original training sets. It is noted that the signal to noise 
ratio (SNR) is roughly equal to 4 (1/0.25=4). 
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 The root-mean-square-error (RMSE) is used to quantify the performance of 
methods and it is defined as 

  ∑
=

−=
v

i
ii vyy

1
/)ˆ(RMSE , (33) 

 
where yi is the desired output, iŷ  is the system output, and v is the number of the used 
training or testing data. The ε-insensitivity parameter and cost parameter C in (21) 
are selected from the range of ε=[0.1, 0.01, 0.001, 0.0001] and C=[10-1, 100, 101, …, 
105], respectively. For the SVFNN training, we choose theε-insensitivity parameter 
and cost parameter C that results in the best RMSE average to calculate the testing 
RMSE. Similarly, the parameters of SVR [37] for comparison are also selected by 
using the same method, too. 
 Tables 4 and 5 show the training and testing RMSEs and the number of used 
fuzzy rules (i.e., support vectors) in the SVFNN on the two functions (Eqs. (31) and 
(32)), respectively. The training and testing RMSEs can reach a nice level by 
selecting a proper parameter set for {ε, C }. The criterion of determining the number 
of reduced fuzzy rules is the difference of the accuracy values before and after 
reducing one fuzzy rule. If the difference is larger than 0.2%, meaning that some 
important support vectors has been removed, the we stop the rule reduction. In Table 
4 (a), the SVFNN is verified by the one-variable function defined as (31), where the 
constant n in the symbol SVFNN-n means the number of the learned fuzzy rules. It 
uses nineteen fuzzy rules and achieves a root mean square error (RMSE) value of 
0.0009 on the training data and an RMSE value of 0.0056 on the testing data. When 
the number of fuzzy rules is reduced to twelve, its testing error rate is increased to 
0.0060. When the number of fuzzy rules is reduced to eleven, its testing error rate is 
increased to 0.0092. Continuously decreasing the number of fuzzy rules will keep the 
error rate increasing. In Table 4 (b), the independent and identically distributed (i.i.d.) 
Gaussian noise, with zero mean and 0.25 standard deviation is added to the function 
in Table 4(a). It uses twenty-five fuzzy rules and achieves a root mean square error 
(RMSE) value of 0.001 on the training data and an RMSE value of 0.078 on the 
testing data. When the number of fuzzy rules is reduced to fifteen, its testing error rate 
is increased to 0.081. When the number of fuzzy rules is reduced to fourteen, its 
testing error rate is increased to 0.139. In Table 5, the SVFNN is verified by the two-
variable functions defined as (32) and we have the similar experimental results as 
those in Table 4. These experimental results show that the proposed SVFNN can 
properly reduce the number of required fuzzy rules and maintain the good 
generalization ability as shown in Figs. 3(b) and 4(b). The cost parameter C controls 
the trade-off between the training error and the VC dimension of the model. Since the 
decision boundaries for the classification problems are usually sharper than the 
approximation curves for the prediction problems, the cost parameter is higher for 
classification problems and lower for prediction problems as comparing Tables 1, 2, 4 
and 5. This phenomenon can also be observed in many related studies [11], [30]. 
 The performance comparisons among the adaptive-network-based fuzzy inference 
system (ANFIS) [38], the RBF-kernel-based SVR (without support vector reduction) 
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[37], and the proposed SVFNN are made in Tables 6 and 7. These results indicate that 
SVFNN maintains the function approximation accuracy and use less support vectors 
as compared to the regular SVR using fixed-width RBF kernels [37]. The 
computational cost of the proposed SVFNN is also less than the regular SVR in the 
testing stage. In addition, according to Table 7 the testing results of SVFNN trained 
by the noisy dataset are close to results trained by the dataset without noise. It 
demonstrates that the proposed SVFNN has better robustness compared to 
conventional neuro-fuzzy inference systems, although the SVFNN uses little more 
rules compare with the ANFIS.  
 
 
Conclusions 
This paper proposes novel support-vector-based fuzzy neural networks (SVFNNs), 
which combine the capability of statistical optimization and global generalization of 
support vector learning in high dimensional data spaces and the efficient human-like 
reasoning of FNN in handling uncertainty information. A novel adaptive fuzzy kernel 
function is also proposed to bring the advantages of FNNs to SVM/SVR directly and 
the use of the proposed fuzzy kernels provides the SVM/SVR with adaptive local 
representation power. The major advantages of the proposed SVFNNs are: (1) The 
proposed SVFNNs can automatically generate fuzzy rules and improve the accuracy 
of classification and approximation function. (2) They combine the optimal learning 
ability of SVM/SVR and the human-like reasoning of fuzzy systems. The pattern 
classification and function approximation ability of SVM and SVR can be improved 
by using the adaptive fuzzy kernels, respectively, and the operation speed can be 
increased by reduced fuzzy rules. (3) The ability of the structural risk minimization 
induction principle that forms the basis for the SVM/SVR to minimize the expected 
risk, gives better generalization ability to the FNN models. In the future work, we will 
try to develop a mechanism to automatically select the optimal initial values of the 
parameters used in the first phase training and the penalty parameter in the second 
phase training. We will also apply the proposed method to deal with huge data sets 
and other real problems. 
 
Table 4: (a).Experimental results of SVFNN on the first function using training data 
without noise. 
 

SVFNN-n 
(SVFNN with n fuzzy rules)

Training process Testing process 
C RMSE RMSE 

SVFNN-19 100 0.0009 0.0056 
SVFNN-16 100 0.0009 0.0056 
SVFNN-12 100 0.0009 0.0060 
SVFNN-11 100 0.0015 0.0092 
1. The first function is f(1)(x)=x2/3 with x∈[-2, 2]. 
2. The number of training data is 50. 
3. The number of testing data is 200. 
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(b). Experimental results of SVFNN on the first function using training data with 
noise. 
 

SVFNN-n 
(SVFNN with n fuzzy rules)

Training process Testing process 
C RMSE RMSE 

SVFNN-25 100 0.001 0.078 
SVFNN-20 100 0.001 0.078 
SVFNN-15 100 0.001 0.081 
SVFNN-14 100 0.0057 0.139 
1. The first function is f(1)(x)=x2/3 with x∈[-2, 2]. 
2. The number of training data is 50. 
3. The number of testing data is 200. 

 
 
Table 5: (a). Experimental results of SVFNN on the second function using training 
data without noise. 
 

SVFNN-n 
(SVFNN with n fuzzy rules) 

Training process Testing process 
C RMSE RMSE 

SVFNN-33 100 0.0018 0.0037 
SVFNN-24 100 0.0018 0.0037 
SVFNN-17 100 0.0018 0.0040 
SVFNN-16 100 0.002 0.0089 
1. The second function is f(2)(x, y)=exp{-2(x2 +y2)} with x∈[-1, 1], y∈[-1, 1]. 
2. The number of training data is 150. 
3. The number of testing data is 600. 

 
 
(b). Experimental results of SVFNN on the second function using training data with 
noise. 
 

SVFNN-n 
(SVFNN with n fuzzy rules) 

Training process Testing process 
C RMSE RMSE 

SVFNN-33 100 0.018 0.051 
SVFNN-24 100 0.018 0.051 
SVFNN-17 100 0.018 0.054 
SVFNN-16 100 0.045 0.121 
1. The second function is f(2)(x, y)=exp{-2(x2 +y2)} with x∈[-1, 1], y∈[-1, 1]. 
2. The number of training data is 150. 
3. The number of testing data is 600. 
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Table 6: Comparisons RMSE using the training data without noise. 
 

  FUNCTION ANFIS [38] RBF-kernel-based SVR [37] SVFNN 
 Number of 

fuzzy rules 
RMSE Number of 

support 
vectors 

RMSE Number of 
Fuzzy rules 

RMSE 

(1) ( )f x  11 0.0067 50 0.0054 12 0.006 
(2) ( , )f x y  9 0.0039 122 0.0018 17 0.004 

 
 

Table 7: Comparisons RMSE using the training data with noise. 
 

  FUNCTION ANFIS [38] RBF-kernel-based SVR [37] SVFNN 
 Number of 

fuzzy rules 
RMSE Number of 

support 
vectors 

RMSE Number of 
Fuzzy rules 

RMSE 

(1) ( )f x  12 0.5 49 0.07 15 0.081 
(2) ( , )f x y  9 0.305 139 0.04 17 0.054 

 

 
 

(a)                                  (b) 
 
Figure 3: (a) The desired output of the function shown in (31). (b) The resulting 
approximation by SVFNN. 
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(a)                                          (b) 

 
Figure 4: (a) The desired output of the function shown in (32). (b) The resulting 
approximation by SVFNN. 
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