
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 1, Number 1 (2011), pp. 31-54
© International Research Publications House
http://www. ripublication.com

Support-Vector-Based Fuzzy Neural Networks

Chin-Teng Lin1, Chang-Mao Yeh2, Jen-Feng Chung3,
Sheng-Fu Liang4 and Her-Chang Pu5

1National Chiao-Tung University, Department of Computer Science,

Department of Electrical and Control Engineering,
Ta Hsueh Road, Hsinchu, Taiwan

2,3,4National Chiao-Tung University,
Department of Electrical and Control Engineering,

Ta Hsueh Road, Hsinchu, Taiwan
5National Chiao-Tung University,

Department of Biological Science and Technology,
Ta Hsueh Road, Hsinchu, Taiwan

Abstract

In this paper, novel fuzzy neural networks (FNNs) combining with support
vector learning mechanism called support-vector-based fuzzy neural networks
(SVFNNs) are proposed for pattern classification and function approximation.
The SVFNNs combine the capability of minimizing the empirical risk
(training error) and expected risk (testing error) of support vector learning in
high dimensional data spaces and the efficient human-like reasoning of FNN
in handling uncertainty information. A learning algorithm consisting of three
learning phases is developed to construct the SVFNNs and train the
parameters. In the first phase, the fuzzy rules and membership functions are
automatically determined by the clustering principle. In the second phase, the
parameters of FNN are calculated by the SVM and SVR with the proposed
adaptive fuzzy kernel function for pattern classification and function
approximation, respectively. In the third phase, the relevant fuzzy rules are
selected by the proposed fuzzy rule reduction method. To investigate the
effectiveness of the proposed SVFNNs, they are applied to the Iris and
Vehicle datasets for classification, and one- and two- variable functions for
approximation, respectively. Experimental results show that the proposed
SVFNNs can achieve good pattern classification and function approximation
performance with drastically reduced number of fuzzy kernel functions (fuzzy
rules).

Keywords: Fuzzy neural network, fuzzy kernel function, support vector

32 Chin-Teng Lin et al

machine, support vector regression, pattern classification, function
approximation.

Introduction
It is an important key issue in many scientific and engineering fields to classify the
acquired data or estimate an unknown function from a set of input-output data pairs.
As is widely known, fuzzy neural networks (FNNs) have been proposed and
successfully applied to solving these problems such as classification, identification,
control, pattern recognition, and image processing, etc [1]-[4]. A fuzzy system
consists of a bunch of fuzzy if-then rules. Conventionally, the fuzzy if-then rules were
usually derived from human experts as linguistic knowledge. Obviously, it is not
always easy to derive fuzzy rules from human experts or to examine all the input-
output data to find a number of proper rules for the fuzzy system. So, most previous
researches issue the method of automatically generating fuzzy rules from numerical
data and use the backpropagation (BP) and/or C-cluster type learning algorithms to
train parameters of fuzzy rules and membership functions from the training data [5],
[6]. However, such learning algorithm only aims at minimizing the training error, and
it cannot guarantee the lowest testing error rate in the testing phase. In addition, the
local solutions and slow convergence often impose practical constraints in the
function approximation problems [7].
 In statistical learning theory, the support vector machine (SVM) [8] has been
developed for solving these bottlenecks. SVM performs structural risk minimization
and creates a classifier with minimized Vapnik Chervonenkis (VC) dimension [9]. As
the VC dimension is low, the expected probability of error is low to ensure a good
generalization. When SVM is employed to tackle the problems of function
approximation and regression estimation, it is referred as the support vector regression
(SVR) [10]. SVR can perform high accuracy and robust properties for function
approximation with noise [11]. Some researches have been done on combining SVM
with FNN [12]-[15]. In [12], the support vector learning mechanism provides the
architecture to extract support vectors for generating fuzzy IF-THEN rules from the
training data set. This method provides reliable performance in the cases of
prediction. In [13], a self-organizing map with fuzzy class memberships is used to
reduce the training samples to speed up the SVM training. The methods in [14]-[15]
improve the accuracy of multi-class pattern recognition and regression estimation
problems and reduce the influence of noises. However, the regular SVM and SVR
suffer from the difficulty of long computational time in using nonlinear kernels on
large datasets which come from many real applications.
 In this paper, novel support-vector-based fuzzy neural networks (SVFNNs) which
integrate the statistical support vector learning method into FNN and exploit the
knowledge representation power and learning ability of the FNN to determine the
kernel functions of the SVM/SVR adaptively are proposed. The SVFNNs combine the
capability of minimizing the empirical risk (training error) and expected risk (testing
error) of support vector learning in high dimensional data spaces and the efficient
human-like reasoning of FNN in handling uncertainty information. In addition, we

Support-Vector-Based Fuzzy Neural Networks 33

also propose a novel adaptive fuzzy kernel function, which has been proven to be a
Mercer kernel, to bring the advantages of FNNs (such as adaptive learning and
economic network structure) to SVM/SVR. The use of the proposed fuzzy kernels
provides the SVM/SVR with adaptive local representation power such that the
number of support vectors can be further reduced. The proposed learning algorithm
consists of three learning phases to construct and train the SVFNNs. In the first phase,
the fuzzy rules and membership functions are automatically determined based on the
fuzzy clustering method. In the second phase, the parameters of FNN are calculated
by the SVM and SVR with the proposed adaptive fuzzy kernel function for pattern
classification and function approximation, respectively. In the third phase, the
relevant fuzzy rules are selected by the proposed fuzzy rule reduction method. The
proposed SVFNNs are applied to the Iris and Vehicle datasets for classification and
one- and two-variable functions for approximation. Experimental results show that the
proposed SVFNNs can automatically generate the fuzzy rules, improve the accuracy
of pattern classification and function approximation, reduce the number of required
kernel functions, and increase the speed in test phase.
 The rest of this paper is organized as follows. Section II describes the structure
and initial construction of SVFNNs. The learning algorithm of SVFNNs is developed
in Section III. In Section IV, performance comparisons between SVFNNs and other
classification and function approximation methods are made. Finally, the conclusions
are summarized in Section V.

Structure and Construction of Initial Fuzzy Neural Network
Structure of Fuzzy Neural Network
The proposed SVFNN is a four-layered FNN that is comprised of the input,
membership function, fuzzy rules, and output layers as shown in Fig.1. Layer 1
accepts input variables, whose nodes represent input linguistic variables. Layer 2 is to
calculate the membership values, whose nodes represent the terms of the respective
linguistic variables. Nodes at Layer 3 represent fuzzy rules. The links before Layer 3
represent the preconditions of fuzzy rules, and the links after Layer 3 represent the
consequences of fuzzy rules. Layer 4 is the output layer. This four-layered network
realizes the following form of fuzzy rules:
 Rule Rj: IF x1 is A1j and …xi is Aij….. and xM is AMj,

 THEN y is dj , j=1, 2, …, N, (1)

where Aij are the fuzzy sets of the input variables xi, i =1, 2, …, M and dj are the
consequent parameter of y. For the ease of analysis, a fuzzy rule 0 is added as:
 Rule 0: IF x1 is A10 and … and xM is AM0,
 THEN y is d0, (2)

where Ak0 is a universal fuzzy set, whose fuzzy degree is 1 for

34 Chin-Teng Lin et al

Figure 1: The structure of the four-layered fuzzy neural network.

any input value xi, i =1, 2, …, M and d0 is the consequent parameter of y in the fuzzy
rule 0. Define O(P) and a(P) as the output and input variables of a node in layer P,
respectively. The signal propagation and the basic functions in each layer are
described as follows.

Layer 1 – Input layer: No computation is done in this layer. Each node in this layer,
which corresponds to one input variable, only transmits input values to the next layer
directly. That is
 (1) (1)

i iO a x= = , (3)

where xi, i=1, 2, …, M are the input variables of the FNN.

Layer 2 – Membership function layer: Each node in this layer is a membership
function that corresponds one linguistic label (e.g., fast, slow, etc.) of one of the input
variables in Layer 1. In other words, the membership value which specifies the degree
to which an input value belongs to a fuzzy set is calculated in Layer 2:
 (2) () (2)()j

i iO u a= , (4)

where ui

(j)=(⋅) is a membership function ui
(j)=(⋅):R→[0, 1], i=1, 2, ⋅⋅⋅, M, j=1, 2, …, N.

With the use of Gaussian membership function, the operation performed in this layer
is

(2) 2

2

()

(2)
i ij

ij

a m

O e σ

−
−

= , (5)

where mij and σij are, respectively, the center (or mean) and the width (or variance) of
the Gaussian membership function of the j-th term of the i-th input variable xi.

Layer 1

Layer 4

Layer 3

Layer 2

d1

dN
d2

∑

x1 x2

d0

xM

y

LLL

R1 R2
RNLLL

LL L L

Support-Vector-Based Fuzzy Neural Networks 35

Layer 3 – Rule layer: A node in this layer represents one fuzzy logic rule and
performs precondition matching of a rule. Here we use the AND operation for each
Layer 2 node

 [()] [()](3) (3)

1

T
j j j j

M

i
i

O a e−
=

= =∏ D x-m D x-m , (6)

where Dj=diag[1/σ1j, ⋅⋅⋅, 1/σMj], mj=[m1j, m2j, …, mMj]T, x=[x1, x2, x3, …, xM]T is the
FNN input vector of FNN. The output of a Layer-3 node represents the firing strength
of the corresponding fuzzy rule.

Layer 4 – Output layer: The single node O(4) in this layer is labeled with Σ, which
computes the overall output and can be computed as:

 (4) (4)
0

1

N

j j
j

O d a d
=

= × +∑ , (7)

where the connecting weight dj is the output action strength of the Layer 4 output
associated with the Layer 3 rule, and the scalar d0 is a bias. Thus the fuzzy neural
network mapping can be rewritten in the following input-output form:

 (4) (4) ()
0 0

1 1 1

()
MN N

j
j j j i i

j j i

O d a d d u x d
= = =

= × + = +∑ ∑ ∏ . (8)

Construction of Fuzzy Rules
In order to construct the initial fuzzy rules of FNN, the fuzzy clustering method is
used to partition a set of data into a number of overlapping clusters based on the
distance in a metric space between the data points and the cluster prototypes. Each
cluster in the product space of the input-output data represents a rule in the rule base.
In this study, the aligned clustering-based approach proposed in [16] is used to
partition a set of data to establish the fuzzy preconditions in the rules.
 In the classification problem, the training set is S = {(x1, y1), (x2, y2), …, (xv, yv)}
with explanatory variable xi and the corresponding binary class labels yi∈{-1,+1}, for
all i=1, ⋅⋅⋅, v, where v is the number of data. We use a clustering method which takes
care of both the input and output values of a data set to satisfy the aforementioned
conditions. That is, the clustering is done based on the fact that the points lying in a
cluster also belong to the same class or have an identical value of the output variable.
The class information of input data is only used in the training stage to generate the
clustering-based fuzzy rules; however, in the testing stage, the input data excite the
fuzzy rules directly without using class information. In addition, we also allow
existence of overlapping clusters, with no bound on the extent of overlap, if two
clusters contain points belonging to the same class. Thus a point may be geometrically
closer to the center of a cluster, but it can belong only to the nearest cluster, which has
the points belonging to the same class as that point. In the function approximation
problem, the Cartesian product-space of the input and output is applied to the

36 Chin-Teng Lin et al

clustering algorithm [17]. The training samples are partitioned into characteristic
regions where the system behaviors are approximated. The input data set is formed by
combining the input vector x=[x1, x2, x3, …, xM]T and the corresponding output value
yi.
 Based on the clustering-based approach to construct initial fuzzy rules of FNN,
first the input datasets are partitioned. For each incoming pattern b,

⎩
⎨
⎧

=
dataset,regressionfor];[
dataset,tion classificafor

Tyx
x

b (9)

the strength a rule is fired can be interpreted as the degree the incoming pattern
belongs to the corresponding cluster. A rule corresponds to a cluster in the input
space, with mj and Dj representing the center and variance of that cluster. We can use
the firing strength derived in (6) directly as this degree measure

 [()] [()](3)

1

() −

=

= =∏
T

j j j j
M

j
i

i

F a e D b-m D b-mb]1,0[∈ , (10)

where Fj(b)∈[0, 1]. In the above equation the term [Dj(b-mj)]T[Dj(b-mj)] is the
distance between b and the center of cluster j. Using this measure, we can obtain the
following criterion for the generation of a new fuzzy rule. Let b be the newly
incoming pattern. Find

1 ()
arg max ()

≤ ≤
= j

j c t
J F b , (11)

where c(t) is the number of existing rules at time t. If FJ ≤ F(t), then a new rule is
generated, where F(t)∈(0, 1) is a prespecified threshold that decays during the
learning process. Once a new rule is generated, the next step is to assign initial centers
and widths of the corresponding membership functions. Since our goal is to minimize
an objective function and the centers and widths are all adjustable later in the
following learning phases, it is of little sense to spend much time on the assignment of
centers and widths for finding a perfect cluster. Hence we can simply set
 [() 1]+ =c tm b , (12)

[() 1]
1 1 1

ln() ln()c t J Jdiag
F Fχ+

⎡ ⎤−
= ⋅ ⎢ ⎥

⎣ ⎦
D L , (13)

according to the first-nearest-neighbor heuristic [18], where χ ≥ 0 decides the overlap
degree between two clusters. Similar methods are used in [19], [20] for the allocation
of a new radial basis unit. However, in [19] the degree measure doesn’t take the width
Dj into consideration. In [20], the width of each unit is kept at a prespecified constant
value, so the allocation result is, in fact, the same as that in [20]. In this paper, the
width is taken into account in the degree measure, so for a cluster with larger width
(meaning a larger region is covered), fewer rules will be generated in its vicinity than
a cluster with smaller width. This is a more reasonable result. Another disadvantage
of [20] is that another degree measure (the Euclidean distance) is required, which
increases the computation load.

Support-Vector-Based Fuzzy Neural Networks 37

 After a rule is generated, the next step is to decompose the multidimensional
membership function formed in (12) and (13) to the corresponding 1-D membership
function for each input variable. To reduce the number of fuzzy sets of each input
variable and to avoid the existence of highly similar ones, we should check the
similarities between the newly projected membership function and the existing ones
in each input dimension. Before going to the details on how this overall process
works, let us consider the similarity measure first. Since Gaussian membership
functions are used in SVFNN, we use the formula of the similarity measure of two
fuzzy sets with Gaussian membership functions derived previously in [19]. Suppose
that the fuzzy sets to be measured are fuzzy sets A and B with membership function
μA(x)=exp{-(x-c1)2/σ1

2} and μB(x)=exp{-(x-c2)2/σ2
2}, respectively. The union of two

fuzzy sets A and B is a fuzzy set A∪B such that μA∪B(x)=max[uA(x), uB(x)], for every
x U∈ . The intersection of two fuzzy sets A and B is a fuzzy set A∩B such that
μA∩B(x)=min[uA(x), uB(x)], for every x∈U. The size or cardinality of fuzzy set A,
M(A), equals the sum of the support values of A: M(A)=ΣuA(x), for x∈U. Since the
area of the bell-shaped function, exp{-(x-m)2/σ2}, is σ π and its height is always 1, it
can be approximated by an isosceles triangle with unity height and the length of
bottom edge 2σ π . We can then compute the fuzzy similarity measure of two fuzzy
sets with such kind of membership functions. Assume c1 ≥ c2 as in [21], we can
compute M|A∩B| by

2
2 1 1 2

1 2

2 2
2 1 1 2 2 1 1 2

2 1 1 2

()1(min[(), ()])
2 ()

() ()1 1
2 2() ()

A B
x U

h c c
M A B u x u x

h c c h c c

π σ σ

π σ σ

π σ σ π σ σ

π σ σ π σ σ

∈

⎡ ⎤− + +⎣ ⎦∩ = = +
+

⎡ ⎤ ⎡ ⎤− + − − − +⎣ ⎦ ⎣ ⎦+
− −

∑ (14)

where h(⋅)=max{0, ⋅}. So the approximate similarity measure is

1 2

(,)
M A B M A B

E A B
M A B M A Bσ π σ π

∩ ∩
= =

∪ + − ∩
, (15)

where we use the fact that M(A)+M(B)=M(A∩B)+M(A∪B) [21]. By using this
similarity measure, we can check if two projected membership functions are close
enough to be merged into one single membership function μC(x)=exp{-(x-c3)2/σ3

2}.
The mean and variance of the merged membership function can be calculated by

 1 2
3 2

c cc +
= , (16)

 1 2
3 2

σ σσ +
= . (17)

 The detailed learning algorithm is given in next section.

Learning Algorithm
The proposed learning algorithm of SVFNN consists of three phases. In the first

38 Chin-Teng Lin et al

phase, the initial fuzzy rule (cluster) and membership of network structure are
automatically established based on the fuzzy clustering method. The input space
partitioning determines the initial fuzzy rules, which is used to determine the fuzzy
kernels. In the second phase, the means of membership functions and the connecting
weights between layer 3 and layer 4 of SVFNN (see Fig. 1) are optimized by using
the result of the support vector learning method with the fuzzy kernels for pattern
classification and function approximation, respectively. In the third phase,
unnecessary fuzzy rules are recognized and eliminated and the relevant fuzzy rules are
determined.

Learning Phase 1 – Establishing initial fuzzy rules
The first phase establishes the initial fuzzy rules. The input space partitioning
determines the number of fuzzy rules extracted from the training set and also the
number of fuzzy sets. We use the centers and widths of the clusters to represent the
rules. To determine the cluster to which a point belongs, we consider the value of the
firing strength for the given cluster. The highest value of the firing strength
determines the cluster to which the point belongs. The whole algorithm of SVFNN for
the generation of new fuzzy rules as well as fuzzy sets in each input variable is as
follows. Suppose no rules are existent initially.
 In the above algorithm, σinit is a prespecified constant, c(t) is the rule number at
time t, χ decides the overlap degree between two clusters, and the threshold Fin
determines the number of rules generated. For a higher value of Fin, more rules are
generated and, in general, a higher accuracy is achieved. The value ρ(t) is a scalar
similarity criterion, which is monotonically decreasing such that higher similarity
between two fuzzy sets is allowed in the initial stage of learning. The pre-specified
values are given heuristically. In general, the threshold Fin = 0.35, prespecified
constant σinit = 0.5, the overlap degree χ = 2. In addition, after we determine the
precondition part of fuzzy rule, we also need to properly assign the consequence part
of fuzzy rule. For pattern classification, we define two output nodes for doing two-
cluster recognition. If output node 1 obtains higher exciting value, we know this
input-output pattern belongs to class 1. Hence, initially, we should assign the proper
weight wCon-1 for the consequence part of fuzzy rule. Another parameter in (7) that
needs concern is the weight dj associated with each αj

(4). It is presented in Learning
Phase 2 to show how we can use the results to determine these weights.

IF b is the first incoming input pattern THEN do
PART 1. {Generate a new rule with center ml=b
and
 width D1=diag[1/σinit, ⋅⋅⋅, 1/σinit],
 IF b is the classification dataset
 { IF the output pattern y belongs to class 1
 (namely, y=[1 0]),
 {wCon-1=[1 0] for indicating output node 1
 been excited, }
 ELSE { wCon-1=[0 1] for indicating output

Support-Vector-Based Fuzzy Neural Networks 39

 node 2 been excited.}}
 }
ELSE for each newly incoming input b, do
PART 2. {Find J=arg(max Fj(b), for 1 ≤ j ≤ c(t))
as defined in (10).
 IF (wCon-J ≠ y for classification) or
 (FJ ≤ Fin(t) for regression)
{ set c(t+1)=c(t)+1 and generate a new fuzzy
rule,
 with mc(t+1)=b and
Dc(t+1)=(-1/χ)diag(1/ln(FJ), ⋅⋅⋅, 1/ln(FJ)),
 where χ decides the overlap degree between
 two clusters. The wCon-c(t+1)=y for classification.
In addition, after decomposition, we have mnew-

i=bi,
σnew-i=-χ×ln(FJ), i=1, ⋅⋅⋅,M. Do the following
fuzzy measure for each input variable i:
 {Degree(i, t)≡max1 j ki(E[μ(mnew-i, σnew-i), μ(mij,
σij)]),
where E(⋅) is defined in (15).
 IF Degree(i, t) ≤ ρ(t)
THEN adopt this new membership function,
and set ki=ki+1, where ki is the number of
partitions of the ith input variable.
ELSE merge the new membership function
with closest one

2
new i closest

new i closest
m mm m −

−

+
= = ,

2
σ σσ σ −

−
+

= = new i closest
new i closest .

 } }
 ELSE
{IF FJ ≤ Fin(t) for classification
{generate a new fuzzy rule with mc(t+1)=b,
Dc(t+1)=(-1/χ)diag(1/ln(FJ), ⋅⋅⋅, 1/ln(FJ)), and the
 respective consequent weight wCon-c(t+1)=y.
In addition, we also need to do the fuzzy measure
for each input variable i.
} } }

Learning Phase 2 - Calculating the parameters of SVFNN
Through above method, the initial structure of SVFNN is established. If SVFNN is
applied to pattern classification, we can then use the SVM method [22] to find the

40 Chin-Teng Lin et al

optimal parameters of SVFNN that can solve classification problem. The dual
quadratic optimization of SVM [23] is solved in order to obtain an optimal hyperplane
for any linear or nonlinear space:

 maximize ∑ ∑
= =

−=
v

i

v

ji
jijijii KyyL

1 1,
),(

2
1)(xxαααα

r

 subject to 0 ≤ αi ≤ C, i=1, 2, ⋅⋅⋅, v, and ∑
=

=
v

i
iiy

1
,0α (18)

where K(xi,xj) is the fuzzy kernel that is defined as [24]

$() () () $

=1

, if and are both in the -th cluster
,

0, otherwise,

M

j i j i
i

u x u z j
K

⎧
⋅⎪=⎨

⎪⎩

∏ x z
x z

$
$

 (19)

where x̂ =[x1, x2, x3, …, xM] ∈RM and ẑ =[z1, z2, z3, …, zM] ∈RM are any two training
samples, and uj(xi) is the membership function of the j-th cluster, and C is a user-
specified positive parameter to control the tradeoff between complexity of SVM and
the number of nonseparable points. This quadratic optimization problem can be
solved and a solution 0α

r
=(α1

0, α2
0, ⋅⋅⋅, αnsv

0) can be obtained, where αi
0 are Lagrange

coefficients, and nsv is the number of support vectors. The corresponding support
vectors sv=[sx1, sx2, ⋅⋅⋅, sxi, ⋅⋅⋅, sxnsv] can be obtained, and the constant (threshold) d0
in (7) is

 () ()* *
0 0 0

1 (1) (1)
2

d w x w x⎡ ⎤= ⋅ + ⋅ −⎣ ⎦
 with

0
1

nsv

i i i
i

w y xα
=

=∑ , (20)

where the support vector x*(1) belongs to the first class and support vector x*(-1)
belongs to the second class.
 If SVFNN is applied to function approximation, the optimal parameters of
SVFNN are trained by using the ε-insensitivity loss function SVR [22] based on the
fuzzy kernels [24]. The dual quadratic optimization of SVR [23] is solved in order to
obtain an optimal hyperplane for any linear or nonlinear space:

 maximize ∑ ∑
= =

−++−=
v

i

v

i
iiiii yL

1 1

***)()(),(ααααεαα

 ∑
=

−−−
v

ji
jijjii K

1,

**),())((
2
1 xxαααα

subject to constraints

 ∑ ∑
= =

=
v

i

v

i
ii

1 1

* αα , 0 ≤ αi
* ≤ C, 0 ≤ αi ≤ C, i=1, 2, ⋅⋅⋅, v, (21)

where K(xi,xj) is the fuzzy kernel that is defined as [24], ε is a previously chosen

Support-Vector-Based Fuzzy Neural Networks 41

nonnegative number ε for ε-insensitive loss function, and C is a user-specified
positive parameter to control the tradeoff between complexity of SVR and the number
of nonseparable points. This quadratic optimization problem can be solved and a
solution ()1 2, ,, nsvα α α α=

ur and ()* * * *
1 2, ,, nsvα α α α=

ur can be obtained, where αi and

αi
* are Lagrange coefficients. The corresponding support vectors sv=[sx1, sx2, ⋅⋅⋅, sxi,

⋅⋅⋅, sxnsv] can be obtained, and the constant (threshold) d0 in (7) is

 0 0
1

1 (())
v

T
i i

i
d y

v =

= −∑ x w with *
0

1

()
nsv

i i i
i

α α
=

= −∑w x , (22)

 Hence, the fuzzy rules of SVFNN are reconstructed by using the results of the
SVM and SVR learning with fuzzy kernels, for pattern classification and function
approximation, respectively. The means and variances of the membership functions
can be calculated by the values of support vector mj=sxj, j=1, 2, …, nsv, in (5) and (6)
and the variances of the multidimensional membership function of the cluster that the
support vector belongs to, respectively. The coefficients dj in (7) corresponding to
mj=sxj can be calculated by dj=yj(αj

*-αj). In this phase, the use of variable-width
fuzzy kernels makes SVM and SVR more efficient in terms of the number of required
support vectors, which are corresponding to the fuzzy rules in SVFNN.

Learning Phase 3 – Removing irrelevant fuzzy rules
In this phase, the number of fuzzy rules learning in Phases 1 and 2 is reduced by
removing some irrelevant fuzzy rules and the consequent parameters of the remaining
fuzzy rules is retuned under the condition that the accuracy of SVFNN for pattern
classification or function approximation is kept almost the same. The method reduces
the number of fuzzy rules by minimizing the distance measure between original fuzzy
rules and reduced fuzzy rules without losing the generalization performance. To
achieve this goal, we rewrite (8) as

2

2

()

(4) (4)
0 0

1 1 1

i ij

ij

x m
MN N

j j j
j j i

O d a d d e dσ

−
−

= = =

= × + = +∑ ∑ ∏ , (23)

where N is the number of fuzzy rules after Learning phases 1 and 2. Now we try to
approximate it by the expansion of a reduced set:

2Re

2Re

()

Re(4) Re(4)
0 0

1 1 1

i iq
z z

iq

x m
R R M

q q q
q q i

O a d e dσβ β

−
−

= = =

= × + = +∑ ∑ ∏

and

2

Re

Re

2

()

Re(4)

1

()
i

iq

iqx m
M

q
i

a e σ

−
−

=

=∏x , (24)

42 Chin-Teng Lin et al

where Rz is the number of reducing fuzzy rules with N > Rz, βq is the consequent
parameters of the remaining fuzzy rules, and miq

Re and σiq
Re are the mean and variance

of reducing fuzzy rules and mq
Re =[m1q

Re, m2q
Re, ⋅⋅⋅, mMq

Re,]T. For choosing the more
important Rz fuzzy rules from the old N fuzzy rules, the approximation in (24) can be
achieved by computing a whole sequence of reduced set approximations [25]

 Re(4) Re(4)

1

r

r q q
q

O aβ
=

= ×∑ , (25)

for r=1, 2, …, RZ. Then, the mean and variance parameters, mq

Re and σq
Re, in the

expansion of the reduced fuzzy-rule set in (24) can be obtained by the following
iterative optimization rule [25]:

(4) Re

1Re
1

(4) Re

1

()

()

N

j j q j
j

q N

j j q
j

d a

d a

=
+

=

× ×
=

×

∑

∑

m m
m

m

. (26)

 According to (26), we can find the parameters, mq

Re and σq
Re, corresponding to

the first most important fuzzy rule and then remove this rule from the original fuzzy
rule set represented by mj, j=1, 2, …, N and put (add) this rule into the reduced fuzzy
rule set. Then the procedure for obtaining the reduced rules is repeated. The optimal
coefficients βq, q=1, 2, ⋅⋅⋅, Rz, are then computed to approximate O(4)=Σ(dj×aj), for
j=1, ⋅⋅⋅, N, by ORe(4)=Σ(βq×aq

Re) [25], for q=1, ⋅⋅⋅, Rz, and can be obtained as
 1

1 2[,,]
z z z zR R R R Nβ β β β −

× ×= = × ×ΘK K , (27)
where

Re(4) Re Re(4) Re Re(4) Re
1 1 1 2 1

Re(4) Re Re(4) Re
2 1 2 2

Re(4) Re
1

Re(4) Re Re(4) Re Re(4) Re
1 1

() () ()

() ()
()

() () ()

z

z z

z z

z z z z z

R

R R
R R

R R R R R

a a a

a a
a

a a a

×
−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

m m m

m m
K

m

m m m

L

O M

M O O

L

 (28)

and

Re(4) Re(4) Re(4)
1 1 1 2 1

Re(4) Re(4)
2 1 2 2

Re(4)
1

Re(4) Re(4) Re(4)
1 1

() () ()

() ()
()

() () ()

x

z

z

z z z

R

R N
R N

R R N R N

a a a

a a
a

a a a

×
−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

m m m

m m
K

m

m m m

L

O M

M O O

L

 (29)

and
 1 2[, , ,]Nd d dΘ = L . (30)

 The whole learning scheme is iterated until the new rules are sufficiently sparse.

Support-Vector-Based Fuzzy Neural Networks 43

Experimental Results and Discussions
In order to evaluate the performance of the proposed SVFNNs, we apply SVFNNs to
the Iris dataset from UCI repository [26] and the Vehicle dataset from Statlog
collection [27] for classification, and the one- and two- variable functions for
approximation, respectively.

Pattern Classification
The Iris dataset is originally a collection of 150 samples belonging to three classes.
The Vehicle dataset consists of 846 samples belonging four classes. Because the Iris
and Vehicle datasets do not contain testing data explicitly, we divide the whole data in
Iris and Vehicle datasets into two halves as the training and testing datasets,
respectively.
 Tables 1 and 2 show the classification accuracy rates and the number of used
fuzzy rules (i.e., support vectors) in the SVFNN applied to the Iris and Vehicle
datasets, respectively. The criterion of determining the number of reduced fuzzy rules
is the difference of accuracy values before and after reducing one fuzzy rule. If the
difference is larger than 0.5%, meaning that some important support vector has been
removed, then we stop the rule reduction. The generalized accuracy is estimated by
using different cost parameters C=[212, 211, 210, …, 2-2] in (18). We apply 2-fold
cross-validation for 100 times on the whole training data in the Iris and Vehicle
datasets and then average all the results. The cost parameter C that results in the best
average cross-validation rate for SVM training is chosen to predict the test set. In
Table 1, the proposed SVFNN is verified by using the Iris dataset, where the constant
n in the symbol SVFNN-n means the number of the learned fuzzy rules. It uses
fourteen fuzzy rules and achieves an error rate of 2.6% on the training data and an
error rate of 4% on the testing data. When the number of fuzzy rules is reduced to
seven, its error rate is increased to 5.3%. When the number of fuzzy rules is reduced
to four, its error rate is increased to 13.3%. Continuously decreasing the number of
fuzzy rules will keep the error rate increasing. In Table 2, the proposed SVFNN is
verified by using the Vehicle dataset and we have the similar experimental results as
those in Table 1.

Table 1: Experimental results of SVFNN classification on the Iris dataset.

SVFNN-n (SVFNN with n fuzzy
rules)

Training
process

Testing process

Error rate C Number of
misclassification

Error
rate

SVFNN-14 2.6% 212 3 4%
SVFNN-11 2.6% 212 3 4%
SVFNN-9 2.6% 212 3 4%
SVFNN-7 4% 212 4 5.3%
SVFNN-4 17.3% 212 10 13.3%
1. Input dimension is 4.
2. The number of training data is 75.
3. The number of testing data is 75.

44 Chin-Teng Lin et al

Table 2: Experimental results of SVFNN classification on the Vehicle dataset.

SVFNN-n (SVFNN with n fuzzy
rules)

Training
process

Testing process

Error rate C Number of
misclassification

Error
rate

SVFNN-321 13.1% 211 60 14.2%
SVFNN-221 13.1% 211 60 14.2%
SVFNN-171 13.1% 211 60 14.2%
SVFNN-125 14.9% 211 61 14.5%
SVFNN-115 29.6% 211 113 26.7%
1. Input dimension is 18.
2. The number of training data is 423.
3. The number of testing data is 423.

Table 3: Classification error rate comparisons among FNNs, RBF-kernel-based
SVM, RSVM and SVFNN classifiers, where NA means “not available”.

Datasets FNN [28, 29] RBF-kernel-based

SVM [30]
RSVM [31] SVFNN

FUZZY
RULES

Error
rate

support
vectors

Error
rate

support
vectors

Error
rate

Fuzzy
rules

Error
rate

Iris NA 4.3% 16 3.3% 14 4% 7 5.3%
Vehicle NA 29.9% 343 13.4% 198 14% 125 14.5%

 The performance comparisons among the existing fuzzy neural network classifiers
[28], [29], the RBF-kernel-based SVM (without support vector reduction) [30],
reduced support vector machine (RSVM) [31] and the proposed SVFNNs are made in
Table 3.
 These results indicate that the testing error rates of SVFNN are lower than FNN
classifiers [28], [29], and the SVFNN uses less support vectors as compared to the
regular SVM using fixed-width RBF kernels [30]. As compared to RSVM [31], the
proposed SVFNN can not only achieve high classification accuracy, but also reduce
the number of support vectors quit well. For FNN and SVM, the computational cost
depends on the number of the rules (FNN) and the number of the support vectors
(SVM), respectively. According to Table 3, it can be found that the computational
cost of the proposed SVFNN is less than the regular SVM and RSVM in testing stage.
 We also perform a receiver operating characteristic (ROC) analysis [32]-[34] to
evaluate the assessing performance of the proposed SVFNNs for pattern classification
as shown in Fig. 2. The ROC curve is a plot of the classification sensitivity (i.e. true
positive rate) as the ordinate versus the specificity (i.e. false positive rate) as the
abscissa. It is obtained by continuously varying the threshold associated with its
decision function. In an ideal condition, if the area under the ROC curve is equal to 1,

Support-Vector-Based Fuzzy Neural Networks 45

it shows the best performance. In Fig. 2, the area under the ROC curve is 0.92. This
result shows that the SVFNNs can perform good classification performance.

Figure 2: The ROC analysis of the SVFNN for the classification problem.

Function Approximation
The SVFNN is verified by the one- and two-variable functions for approximation
problems. These two functions have been widely used in the literature [35]-[36]. The
first function is a one-variable function defined as

 (1) 2/3()f x x= with]2,2[−∈x . (31)

 The second function is a two-variable Gaussian function defined as
 (2) 2 2(,) exp{ 2()}f x y x y= − +

with
]1,1[−∈x ,]1,1[−∈y . (32)

Plots of these two functions are shown in Figs. 3(a) and 4 (a).
There are two sets of training data for each function. One is noiseless and the other is
noisy. In the first function, the noiseless training set has 50 points that are generated
by randomly selecting, where x∈[-2, 2]. The testing set has 200 points that are
randomly generated by the same function in the same range. In the second function,
the 150 training examples are generated by randomly selecting, where x∈[-1, 12],
y∈[-1, 1]. The testing set has 600 points that are randomly generated by the same
function in the same range. The noisy training sets are generated by adding
independent and identically distributed (i.i.d.) Gaussian noise, with zero mean and
0.25 standard deviation, to the original training sets. It is noted that the signal to noise
ratio (SNR) is roughly equal to 4 (1/0.25=4).

46 Chin-Teng Lin et al

 The root-mean-square-error (RMSE) is used to quantify the performance of
methods and it is defined as

 ∑
=

−=
v

i
ii vyy

1
/)ˆ(RMSE , (33)

where yi is the desired output, iŷ is the system output, and v is the number of the used
training or testing data. The ε-insensitivity parameter and cost parameter C in (21)
are selected from the range of ε=[0.1, 0.01, 0.001, 0.0001] and C=[10-1, 100, 101, …,
105], respectively. For the SVFNN training, we choose theε-insensitivity parameter
and cost parameter C that results in the best RMSE average to calculate the testing
RMSE. Similarly, the parameters of SVR [37] for comparison are also selected by
using the same method, too.
 Tables 4 and 5 show the training and testing RMSEs and the number of used
fuzzy rules (i.e., support vectors) in the SVFNN on the two functions (Eqs. (31) and
(32)), respectively. The training and testing RMSEs can reach a nice level by
selecting a proper parameter set for {ε, C }. The criterion of determining the number
of reduced fuzzy rules is the difference of the accuracy values before and after
reducing one fuzzy rule. If the difference is larger than 0.2%, meaning that some
important support vectors has been removed, the we stop the rule reduction. In Table
4 (a), the SVFNN is verified by the one-variable function defined as (31), where the
constant n in the symbol SVFNN-n means the number of the learned fuzzy rules. It
uses nineteen fuzzy rules and achieves a root mean square error (RMSE) value of
0.0009 on the training data and an RMSE value of 0.0056 on the testing data. When
the number of fuzzy rules is reduced to twelve, its testing error rate is increased to
0.0060. When the number of fuzzy rules is reduced to eleven, its testing error rate is
increased to 0.0092. Continuously decreasing the number of fuzzy rules will keep the
error rate increasing. In Table 4 (b), the independent and identically distributed (i.i.d.)
Gaussian noise, with zero mean and 0.25 standard deviation is added to the function
in Table 4(a). It uses twenty-five fuzzy rules and achieves a root mean square error
(RMSE) value of 0.001 on the training data and an RMSE value of 0.078 on the
testing data. When the number of fuzzy rules is reduced to fifteen, its testing error rate
is increased to 0.081. When the number of fuzzy rules is reduced to fourteen, its
testing error rate is increased to 0.139. In Table 5, the SVFNN is verified by the two-
variable functions defined as (32) and we have the similar experimental results as
those in Table 4. These experimental results show that the proposed SVFNN can
properly reduce the number of required fuzzy rules and maintain the good
generalization ability as shown in Figs. 3(b) and 4(b). The cost parameter C controls
the trade-off between the training error and the VC dimension of the model. Since the
decision boundaries for the classification problems are usually sharper than the
approximation curves for the prediction problems, the cost parameter is higher for
classification problems and lower for prediction problems as comparing Tables 1, 2, 4
and 5. This phenomenon can also be observed in many related studies [11], [30].
 The performance comparisons among the adaptive-network-based fuzzy inference
system (ANFIS) [38], the RBF-kernel-based SVR (without support vector reduction)

Support-Vector-Based Fuzzy Neural Networks 47

[37], and the proposed SVFNN are made in Tables 6 and 7. These results indicate that
SVFNN maintains the function approximation accuracy and use less support vectors
as compared to the regular SVR using fixed-width RBF kernels [37]. The
computational cost of the proposed SVFNN is also less than the regular SVR in the
testing stage. In addition, according to Table 7 the testing results of SVFNN trained
by the noisy dataset are close to results trained by the dataset without noise. It
demonstrates that the proposed SVFNN has better robustness compared to
conventional neuro-fuzzy inference systems, although the SVFNN uses little more
rules compare with the ANFIS.

Conclusions
This paper proposes novel support-vector-based fuzzy neural networks (SVFNNs),
which combine the capability of statistical optimization and global generalization of
support vector learning in high dimensional data spaces and the efficient human-like
reasoning of FNN in handling uncertainty information. A novel adaptive fuzzy kernel
function is also proposed to bring the advantages of FNNs to SVM/SVR directly and
the use of the proposed fuzzy kernels provides the SVM/SVR with adaptive local
representation power. The major advantages of the proposed SVFNNs are: (1) The
proposed SVFNNs can automatically generate fuzzy rules and improve the accuracy
of classification and approximation function. (2) They combine the optimal learning
ability of SVM/SVR and the human-like reasoning of fuzzy systems. The pattern
classification and function approximation ability of SVM and SVR can be improved
by using the adaptive fuzzy kernels, respectively, and the operation speed can be
increased by reduced fuzzy rules. (3) The ability of the structural risk minimization
induction principle that forms the basis for the SVM/SVR to minimize the expected
risk, gives better generalization ability to the FNN models. In the future work, we will
try to develop a mechanism to automatically select the optimal initial values of the
parameters used in the first phase training and the penalty parameter in the second
phase training. We will also apply the proposed method to deal with huge data sets
and other real problems.

Table 4: (a).Experimental results of SVFNN on the first function using training data
without noise.

SVFNN-n
(SVFNN with n fuzzy rules)

Training process Testing process
C RMSE RMSE

SVFNN-19 100 0.0009 0.0056
SVFNN-16 100 0.0009 0.0056
SVFNN-12 100 0.0009 0.0060
SVFNN-11 100 0.0015 0.0092
1. The first function is f(1)(x)=x2/3 with x∈[-2, 2].
2. The number of training data is 50.
3. The number of testing data is 200.

48 Chin-Teng Lin et al

(b). Experimental results of SVFNN on the first function using training data with
noise.

SVFNN-n
(SVFNN with n fuzzy rules)

Training process Testing process
C RMSE RMSE

SVFNN-25 100 0.001 0.078
SVFNN-20 100 0.001 0.078
SVFNN-15 100 0.001 0.081
SVFNN-14 100 0.0057 0.139
1. The first function is f(1)(x)=x2/3 with x∈[-2, 2].
2. The number of training data is 50.
3. The number of testing data is 200.

Table 5: (a). Experimental results of SVFNN on the second function using training
data without noise.

SVFNN-n
(SVFNN with n fuzzy rules)

Training process Testing process
C RMSE RMSE

SVFNN-33 100 0.0018 0.0037
SVFNN-24 100 0.0018 0.0037
SVFNN-17 100 0.0018 0.0040
SVFNN-16 100 0.002 0.0089
1. The second function is f(2)(x, y)=exp{-2(x2 +y2)} with x∈[-1, 1], y∈[-1, 1].
2. The number of training data is 150.
3. The number of testing data is 600.

(b). Experimental results of SVFNN on the second function using training data with
noise.

SVFNN-n
(SVFNN with n fuzzy rules)

Training process Testing process
C RMSE RMSE

SVFNN-33 100 0.018 0.051
SVFNN-24 100 0.018 0.051
SVFNN-17 100 0.018 0.054
SVFNN-16 100 0.045 0.121
1. The second function is f(2)(x, y)=exp{-2(x2 +y2)} with x∈[-1, 1], y∈[-1, 1].
2. The number of training data is 150.
3. The number of testing data is 600.

Acknowledgment
This work was supported in part by the Ministry of Education, Taiwan, R.O.C., under

Support-Vector-Based Fuzzy Neural Networks 49

Grant EX-91-E-FA06-4-4 and the Ministry of Economic Affairs, Taiwan, R.O.C.,
under Grant 94-EC-17-A-02-S1-032.

Table 6: Comparisons RMSE using the training data without noise.

 FUNCTION ANFIS [38] RBF-kernel-based SVR [37] SVFNN
 Number of

fuzzy rules
RMSE Number of

support
vectors

RMSE Number of
Fuzzy rules

RMSE

(1) ()f x 11 0.0067 50 0.0054 12 0.006
(2) (,)f x y 9 0.0039 122 0.0018 17 0.004

Table 7: Comparisons RMSE using the training data with noise.

 FUNCTION ANFIS [38] RBF-kernel-based SVR [37] SVFNN
 Number of

fuzzy rules
RMSE Number of

support
vectors

RMSE Number of
Fuzzy rules

RMSE

(1) ()f x 12 0.5 49 0.07 15 0.081
(2) (,)f x y 9 0.305 139 0.04 17 0.054

(a) (b)

Figure 3: (a) The desired output of the function shown in (31). (b) The resulting
approximation by SVFNN.

50 Chin-Teng Lin et al

(a) (b)

Figure 4: (a) The desired output of the function shown in (32). (b) The resulting
approximation by SVFNN.

References

[1] W. Y. Wang, T. T. Lee, C. L. Liu, and C. H. Wang, “Function approximation
using fuzzy neural networks with robust learning algorithm,” IEEE Trans.
Syst., Man, Cybern. Pt B, Vol. 27, pp. 740-747, Aug. 1997.

[2] C. C. Chuang, S. F. Su, and S. S. Chen, “Robust TSK fuzzy modeling for
function approximation with outliers,” IEEE Trans. Fuzzy Syst., Vol. 9, pp.
810-821, Dec. 2001.

[3] H. Pomares, I. Rojas, J. Ortega, J. Gonzalez, and A. Prieto, “Systematic
approach to a self-generating fuzzy rule-table for function approximation,”
IEEE Trans. Syst., Man, Cybern. Pt B, Vol. 30, pp. 431-447, June 2000.

[4] S. Wu, M. J. Er, and Y. Gao, “A fast approach for automatic generation of
fuzzy rules by generalized dynamic fuzzy neural networks,” IEEE Trans. Fuzzy
Syst., Vol. 9, pp. 578-594, Aug. 2001.

[5] B. Gabrys and A. Bargiela “General fuzzy min-max neural network for
clustering and classification,” IEEE Trans. Neural Networks, Vol. 11, pp. 769-
783, May 2000.

[6] K. Nozaki, H. Ishibuchi, and H. Tanaka, “Adaptive fuzzy rule-based
classification system,” IEEE Trans. Fuzzy Syst., Vol. 4, pp. 238-250, Aug.
1996.

[7] M. Figueiredo and F. Gomide, “Design of fuzzy systems using neurofuzzy
networks,” IEEE Trans. Neural Networks, Vol. 10, pp. 815-827, July 1999.

[8] V. Vapnik, Statistical Learning Theory, New York: Wiley, 1998.
[9] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector

Machines and Other Kernel-Based Learning Methods, Cambridge University
Press, 2000.

Support-Vector-Based Fuzzy Neural Networks 51

[10] V. Vapnik, S. Golowich, and A. J. Smola, “Support vector method for function
approximation, regression estimation, and signal processing,” in Neural
Information Processing Systems. Cambridge, MA: MIT Press, Vol. 9, 1997.

[11] C. C. Chuang, S. F. Su, J. T. Jeng, and C. C. Hsiao, “Robust support vector
regression network for function approximation with outliers,” IEEE Trans.
Neural Networks, Vol. 13, pp. 1322-1330, Nov. 2002.

[12] J. H. Chiang, and P. Y. Hao, “Support vector learning mechanism for fuzzy
rule-based modeling: a new approach,” IEEE Trans. Fuzzy Syst., Vol. 12, pp.
1-12, Feb. 2004.

[13] S. Sohn and C. H. Dagli, “Advantages of using fuzzy class memberships in
self-organizing map and support vector machines,” Proc. International Joint
Conference on Neural Networks (IJCNN’01), Vol. 3, pp. 1886-1890, July
2001.

[14] Z. Sun and Y. Sun, “Fuzzy support vector machine for regression estimation,”
IEEE International Conference on Systems, Man, and Cybernetics (SMC’03),
Vol. 4, pp. 3336-3341, Oct. 2003.

[15] C. F. Lin and S. D. Wang, “Fuzzy support vector machines,” IEEE Trans.
Neural Networks, Vol. 13, pp. 464-471, March 2002.

[16] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy inference
network and its applications,” IEEE Trans. Fuzzy Syst., Vol. 6, pp. 12-32, Feb.
1998.

[17] M. Setnes, R. Babuska, and H. B. Verbruggen, “Rule-based modeling:
precision and transparency,” IEEE Trans. Syst., Man, Cybern. Part C, Vol. 28,
pp. 165-169, Feb. 1998.

[18] C. T. Lin and C. S. G. Lee “Neural-network-based fuzzy logic control and
decision system,” IEEE Trans. Comput., Vol. 40, pp. 1320-1336, Dec. 1991.

[19] J. Platt, “A resource allocating network for function interpolation,” Neural
Computat., Vol. 3, pp. 213-225, 1991.

[20] J. Nie and D. A. Linkens, “ Learning control using fuzzified self-organizing
radial basis function network,” IEEE Trans. Fuzzy Syst., Vol. 40, pp. 280-287,
Nov. 1993.

[21] C. T. Lin and C. S. G. Lee, “Reinforcement structure/parameter learning for
neural-network-based fuzzy logic control systems,” IEEE Trans. Fuzzy Syst.,
Vol. 2, pp. 46-63, Feb. 1994.

[22] V. N. Vapnik, The Nature of Statistical Learning Theory, New York: Springer-
Verlag, 1990.

[23] B. Schölkopf, C. J. C. Burges, and A. J. Smola, Advances in Kernel Methods—
Support Vector Learning, Cambridge, MA: MIT Press, 1999.

[24] C. T. Lin, C. M. Yeh, S. F. Liang, J. F. Chung, and N. Kumar, “Support vector
based fuzzy neural network for pattern classification,” accept IEEE Trans.
Fuzzy Syst.

[25] B. Scholkopf, S. Mika, C. Burges, etc “Input space versus feature space in
kernel-based methods,” IEEE Trans. Neural Networks, Vol. 10, pp.1000-1017,
Sep. 1999.

52 Chin-Teng Lin et al

[26] C. L. Blake and C. J. Merz, (1998) UCI repository of Machine Learning
Databases, Univ. California, Dept. Inform. Comput. Sci., Irvine, CA. [Online].
Available at: http://www.ics.uci.edu/~mlearn/MLRepository.html.

[27] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, (1994) Machine Learning,
Neural and Statistical Classification [Online]. Available at:
ftp://ftp.stams.strath.ac.uk/pub/.

[28] H. M. Lee, C. M. Chen, J. M. Chen, and Y. L. Jou “An efficient fuzzy classifier
with feature selection based on fuzzy entropy,” IEEE Trans. Syst., Man,
Cybern. Pt B, Vol. 31, pp. 426-432, June 2001.

[29] M. R. Berthold and J. Diamond, “Constructive training of probabilistic neural
networks,” Neurocomputing, Vol. 19, pp. 167-183, 1998.

[30] C. W. Hsu and C. J. Lin, “A comparison of methods for multiclass support
vector machines,” IEEE Trans. Neural Networks, Vol. 13, pp. 415-525, March
2002.

[31] K. M. Lin and C. J. Lin, “A study on reduced support vector machines,” IEEE
Trans. Neural Networks, Vol. 14, pp.1449-1459, Nov. 2003.

[32] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a
receiver operating characteristic ROC curve,” Radiology, Vol. 143, pp. 29-36,
1982.

[33] C. E. Meta, “Some practical issues of experimental design and data analysis in
radiological ROC studies,” Investigat. Radiol., Vol. 24, pp. 234-245, 1989.

[34] K. Woods and K. W. Bowyer, “Generating ROC curves for artificial neural
networks,” IEEE Trans. on Medical Imaging, Vol. 16, pp.329-337, June 1997.

[35] K. Liano, “Robust error measure for supervised neural network learning with
outliers,” IEEE Trans. Neural Networks, Vol. 7, pp.246-250, Jan. 1996.

[36] A. Suarez and J. F. Lutsko, “Globally optimal fuzzy decision trees for
classification and regression,” IEEE Trans. Pattern Analysis and Machine
Intelligence, Vol. 21, pp. 1297-1311, Dec. 1999.

[37] S. R. Gunn. (1999) Support vector regression-Matlab toolbox. Univ.
Southampton, Southampton, U. K.. [Online]. Available at: http://kernel-
machines.org.

[38] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence, Prentice-Hall,
Upper Saddle River, NJ, 1997.

Support-Vector-Based Fuzzy Neural Networks 53

Authors Biography

Dr. Chin-Teng (CT) Lin received B.S. degree from National Chiao-Tung University
(NCTU), Taiwan in 1986 and Ph.D. degrees in electrical engineering from Purdue
University, U.S.A., in 1992. He is currently the Chair Professor of Electrical and
Control Engineering, Associate Dean of the College of Electrical Engineering and
Computer Science, and Director of Brain Research Center at NCTU. He served as the
Director of the Research and Development Office of NCTU from 1998 to 2000, and
the Chairman of Electrical and Control Engineering Department of NCTU from 2000
to 2003. His current research interests are fuzzy neural networks, neural networks,
fuzzy systems, cellular neural networks, neural engineering, algorithms and VLSI
design for pattern recognition, intelligent control, and multimedia (including
image/video and speech/audio) signal processing, and intelligent transportation
system (ITS). Dr. Lin is the book co-author of Neural Fuzzy Systems— A Neuro-
Fuzzy Synergism to Intelligent Systems (Prentice Hall), and the author of Neural
Fuzzy Control Systems with Structure and Parameter Learning (World Scientific). Dr.
Lin has published over 80 journal papers in the areas of neural networks, fuzzy
systems, multimedia hardware/software, and soft computing, including 60 IEEE
journal papers.
 Dr. Lin is an IEEE Fellow for his contributions to biologically inspired
information systems. He serves on Board of Governors at IEEE Circuits and Systems
(CAS) Society in 2005 and IEEE Systems, Man, Cybernetics (SMC) Society in 2003-
2005. He is the Distinguished Lecturer of IEEE CAS Society from 2003 to 2005. Dr.
Lin is the International Liaison of International Symposium of Circuits and Systems
(ISCAS) 2005 in Japan, the Special Session Co-Chair of ISCAS 2006 in Greece, and
the Program Co-Chair of IEEE International Conference on SMC 2006 in Taiwan. He
has been the President of Asia Pacific Neural Network Assembly since 2004. Dr. Lin
has received the Outstanding Research Award granted by National Science Council,
Taiwan, since 1997 to present, the Outstanding Electrical Engineering Professor
Award granted by the Chinese Institute of Electrical Engineering (CIEE) in 1997, the
Outstanding Engineering Professor Award granted by the Chinese Institute of
Engineering (CIE) in 2000, and the 2002 Taiwan Outstanding Information-
Technology Expert Award. Dr. Lin was also elected to be one of the 38th Ten
Outstanding Rising Stars in Taiwan (2000). Dr. Lin currently serves as Associate
editors of IEEE Transactions on Circuits and Systems, Part I & Part II, IEEE
Transactions on Systems, Man, Cybernetics, IEEE Transactions on Fuzzy Systems,
and International Journal of Speech Technology. Dr. Lin is a member of Tau Beta Pi,
Eta Kappa Nu, and Phi Kappa Phi honorary societies.

Chang-Mao Yeh received the B.S. degree in Electronics Engineering and the M.S.
degree in Computer Science and Information Engineering from the National Yunlin
University of Science and Technology, Yunlin, Taiwan, R.O.C., in 1994 and 1997,
respectively. He is currently working toward the Ph.D. degree in electrical and control
engineering at National Chiao-Tung University, Hsinchu, Taiwan, R.O.C. He is also a
Lecturer in information Networking Technology at Chungchou Institute of

54 Chin-Teng Lin et al

Technology, Taichung, Taiwan, R.O.C. His current research interests include neuro-
fuzzy systems, support vector machine, machine learning, pattern recognition.

Jen-Feng Chung was born in Miaoli, Taiwan, in 1971. He received the B.S. degree
in computer science and information engineering from the Chung-Hua University,
Hsinchu, Taiwan, and the M.S. degree in electrical engineering from the Chung-Hua
University, Hsinchu, Taiwan, in 1997 and 1999, respectively. He is currently working
toward the Ph.D. degree in electrical and control engineering at National Chiao-Tung
University (NCTU), Hsinchu, Taiwan. His current research interests are cellular
neural networks (CNNs), VLSI signal processing, audio and image signal processing,
and CPU/DSP architecture design.

Sheng-Fu Liang was born in Tainan, Taiwan, in 1971. He received the B. S. and M.
S. degrees in control engineering from the National Chiao-Tung University (NCTU),
Taiwan, in 1994 and 1996, respectively. He received the Ph.D. degree in Electrical
and Control Engineering from NCTU in 2000.
 From 2001 to 2005, he was a Research Assistant Professor in Electrical and
Control Engineering, NCTU. In 2005, he joined the Department of Biological Science
and Technology, NCTU, where he serves as an Assistant Professor. Dr. Liang has
also served as the chief executive of Brain Research Center, NCTU Branch,
University System of Taiwan since September 2003. His current research interests are
biomedical engineering, biomedical signal/image processing, machine learning, fuzzy
neural networks (FNN), the development of brain-computer interface (BCI), and
multimedia signal processing.

Her-Chang Pu was born in Taipei, Taiwan, in 1972. He received the B.S. and M.S.
degree in automatic control engineering from Feng-Chia University, Taichung,
Taiwan, in 1998. He received the Ph.D. degree in Electrical and Control Engineering
from National Chiao-Tung University (NCTU) in 2003, Hsinchu, Taiwan. Currently,
he is a Research Assistant Professor in Electrical and Control Engineering, NCTU.
His current research interests are in the areas of artificial neural networks, fuzzy
systems, pattern recognition, machine vision and intelligent transportation system
(ITS).

