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ABSTRACT 
 

The problem of mixed convection and mass transfer flow over a vertical porous flat 
plate, in presence of heat generation and thermal diffusion taking in to account the 
viscous dissipation, in the presence of magnetic field, is studied numerically. The 
non-linear partial differential equations and their boundary conditions, describing the 
problem under consideration, are transformed into a system of ordinary differential 
equations by using usual similarity transformations. The non-linear momentum 
equation is linearized by the Quasi-linearization technique. The set of linear ordinary 
differential equations are solved by using the implicit finite difference scheme along 
with Gauss-sidel iterative method. The effects of suction parameter, heat generation 
parameter, Soret number and Magnetic field parameter and viscous dissipation are 
examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid 
pair. The analysis of the obtained results showed that the flow field is significantly 
influenced by these parameters. 
 
Keywords: MHD, thermal diffusion, heat generation, viscous dissipation, finite 
difference method. 
 
 
1.  INTRODUCTION 
Magneto-hydrodynamic equations are ordinary electromagnetic and hydrodynamic 
equations modified to take into account the interaction between the motion of the 
fluid and the electromagnetic field. The formulation of the electromagnetic theory in a 
mathematical form is known as Maxwell’s equation. In recent years, the study of 
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convective heat transfer from surfaces embedded in porous media has received 
considerable attention in the literature. The interest for such studies is motivated by 
several thermal engineering applications, such as geothermal systems, the storage of 
nuclear wastes, oil extraction, ground water pollution and thermal insulation. 
 Combined heat and mass transfer by free-forced convection in a porous 
medium has attracted considerable attention in the last several decades, due to its 
many important engineering and geophysical applications. Combined convective 
cooling is one of the preferred methods for cooling computer systems and other 
electronic equipments due to its simplicity and low cost. Again, the demand for faster 
and denser circuit technologies and packages has been accompanied by increasing 
heat fluxes at the chip and package levels, the application of air cooling techniques, 
involving either free or forced convection, plays a significant role over the years. In 
an enclosure, the interaction between the external forced stream and the buoyancy 
driven flow induced by the increasing high heat flux from electronic modules leads to 
the possibility of complex flows. Therefore it is important to understand the heat 
transfer characteristics of combined convection in an enclosure. In many modern 
buildings, mechanical ventilation is provided as a means of room load removal and 
provision of good indoor air quality. 
 In a mixed convection, both natural convection and forced convection 
participate in the heat transfer process. The bulk fluid flow direction can be any of the 
three possible directions in a horizontal channel, forward, backward or upward. The 
forced flow can be in the same direction as the flow created by natural convection, 
and this flow condition is called assisting mixed convection. Where as, for the other 
case, forced flow direction is in an opposing direction to the flow that is created by 
buoyancy, and this flow condition is referred to as opposing mixed convection. But in 
some cases, convection from a horizontal heated enclosure, the forced flow is 
perpendicular to the buoyancy induced flow and this situation is called transverse 
mixed convection. It is known that a flow situation where both free and forced 
convection effects are of comparable order is called mixed convection. The study of 
such a mixed convection flow finds application in several industrial and technical 
processes such as nuclear reactors cooled during emergency shutdown, solar central 
receivers exposed to winds, electronic devices cooled by fans and heat exchangers 
placed in a low-velocity environment. The simplest physical model of such a flow is 
the two dimensional laminar mixed convection flows along a vertical flat plate and 
extensive studies have been conducted on this type of flow. Applications of this 
model can be found in the areas of reactor safety, combustion flames and solar 
collectors, as well as building energy conservation. 
 
 
2.  MATHEMATICAL ANALYSIS 
A two-dimensional steady combined free-forced convective and mass transfer flow of 
a viscous, incompressible fluid over an isothermal semi-infinite vertical porous flat 
plate embedded in a porous medium is considered. The flow is assumed to be in the x-
direction, which is taken along the vertical plate in the upward direction and the y-
axis is taken to be normal to the plate. The surface of the plate is maintained at a 
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uniform constant temperature wT  and a uniform constant concentration wC , of a 
foreign fluid, which are higher than the corresponding values 1T  and 1C , respectively, 
sufficiently far away from the flat surface. It is also assumed that the free stream 
velocity 1U , parallel to the vertical plate is constant. Then under the boundary layer 
and Boussinesq’s approximations, the governing equations are given by: 
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where u , v  are the velocity components in the x-and y-directions respectively,   is 
the kinematics viscosity, g is the acceleration due to gravity,   is the density of the 
fluid,   is the coefficient of volume expansion, *  is the volumetric coefficient of 
expansion with concentration, T , wT  and T  are the temperature of the fluid inside the 
thermal boundary layer, the plate temperature and the fluid temperature in the free 
stream, respectively, while C , wC  and C  are the corresponding concentrations. 
Also, 'K  is the permeability of the porous medium, k is the thermal conductivity, pC  
is the specific heat at constant pressure, 0Q  is the heat generation constant, MD  is the 
coefficient of mass diffusivity and TD  is the coefficient of thermal diffusivity. 
 For the flow there is no slip at the plate. For uniform plate temperature and 
concentration the appropriate boundary conditions for the above problem are as 
follows: 
 u  0, )(xvv w , wTT  , wCC  , at 0y   (5a) 
 Uu , TT ,  CC  as y   (5b) 
 In order to obtain similarity solution of the problem we introduce the 
following non-dimensional variables (see Schlichting [15], Rahman and Sattar [16]. 
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 Here prime denotes the differentiation with respect to   
 Now substituting equations (6) in equations (2) – (4) we obtain 
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 The boundary conditions (5) then turn into 
 wff  , 0'f , 1 , 1  at 0  
 1'f , 0 , 0  as    (10) 

where 
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xxvf ww )(2  is the suction parameter. The dimensionless parameters 

introduced in the above equations are defined as follows: 
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wT  is the Soret number. 

 
 
3.  MEHOD OF SOLUTION: 
Due to the coupled nature of the current system, the system of non-linear equations 
(7)-(9) with the associated boundary condition in (10) must be solved simultaneously 
by the implicit finite difference scheme in combination with Quassi-linearization 
technique. The effect of step size   and the edge of the boundary layer   on the 
solution has been studied to optimize them, consequently, we have taken   = 0.01 
and 4   8 for computation. The results presented here are independent of step 
sizes and   at least up to the 5th decimal place. Applying the Quasi–linearization 
technique [17] to the non-linear equation (7) 
 
 
4.  SKIN-FRICTION COEFFICIENT, NUSSELT NUMBER AND 
SHERWOOD NUMBER 
The parameters of engineering interest for the present problem are the local skin-
friction coefficient, local Nusselt number and the local Sherwood number which 
indicate physically wall shear stress, rate of heat transfer and rate of mass transfer 
respectively. 
 The equation defining the wall skin-friction is 
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 Now the heat flux )( wq  and the mass flux )( wM  at the wall are given by 
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 Hence, the Nusselt number (Nu) and Sherwood number (Sh) are obtained as 
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 These above coefficients are then obtained numerically sorted in Table 1 
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Table.1 Numerical values of fC , Nu & Sh  for Pr = 0.71, Sc = 0.22, sg 1.0cg , 
05.0K  

 
Q  wf  So  fC  Nu  Sh   

0.5 0.5 0.2 1.8032 0.1061 0.2897  
1.0 0.5 0.2 2.3278 -0.6634. 0.3458  
2.0 0.5 0.2 4.6053 -5.1783 0.5958  
2.0 1.0 0.2 4.5947 -4.7314 0.6071  
2.0 1.5 0.2 4.4997 -4.1596 0.6115  
2.0 1.5 0.8 4.5017 -4.1841 1.1368  
2.0 1.5 2.0 4.5048 -4.1872 1.1811  

 
 
5.  RESULTS AND DISCUSSION 
The effects of wf  on the velocity, temperature and concentration profiles are shown in 
figure.1(a), 1(b) and 1(c) respectively. It is seen from this figure that the velocity profiles 
decrease monotonically with the increase of suction parameter wf  indicating the usual fact 
that suction stabilizes the boundary layer growth. We see that both the temperature and 
concentration profiles decrease with the increase of wf . Sucking decelerated fluid particles 
through the porous wall reduce the growth of the fluid boundary layer as well as thermal and 
concentration boundary layers. The effect of Q on the velocity, temperature and concentration 
profiles are shown in figures 2(a)-(c) respectively. From this figure we see that when the heat 
is generated the buoyancy force increases which induces the flow rate to increase giving rise 
to the increase in the velocity profiles. From figure it is observed that temperature increases 
significantly with the increase of Q. On the other hand, from Fig.2(c) it can be seen that the 
concentration profiles decrease with the increase of the heat generation parameter. 
 Fig.3(a) & (b) shows the variation of dimensionless velocity and concentration 
profiles for different values of So. It is seen from this figure that velocity profiles increase 
with the increase of So from which we conclude that the fluid velocity rises due to greater 
thermal-diffusion. From this figure it is noticed that the concentration profiles increase 
significantly with the increase of Soret number. 
 Figs 4(a)-(c) display dimensionless velocity, temperature and concentration profiles 
for different values of Magnetic field parameter M. The Hartmann number represents the 
importance of magnetic field on the flow. It is observed that the presence of magnetic field 
sets in Lorentz force which in turn results retarding force on the velocity field and therefore as 
Hartmann number increases, so does the retarding force and hence, the velocity profiles 
decreases. From Fig.4(b) it is noticed that the temperature profiles increases with the increase 
in Hartmann number because the magnetic filed retards the velocity of the fluid and therefore 
the temperature of the plate is higher. It is seen that the concentration of the fluid increases 
with the increase of Hartmann number. The figures 5(a) and (b) depicts the effects of viscous 
dissipation on velocity and temperature profiles respectively. It can be seen from the figures, 
with the increase of Eckert number the velocity and temperature profiles are increases. 
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5  CONCLUSIONS 
In this paper we have studied the steady MHD two-dimensional combined free-forced 
convection and mass transfer flow over a semi-infinite vertical porous plate embedded in a 
porous medium in the presence of heat generation, thermal diffusion taking into the account 
of viscous dissipation. The effects of various parameters have been examined on the flow 
field for a hydrogen-air mixture as a non-chemical reacting fluid pair. From the present 
investigation the following conclusions may be drown: 
1) Wall suction stabilizes the velocity, thermal as well as concentration boundary layer 

growth. 
2) Both the velocity and temperature profiles increase whereas the concentration profile 

decreases with the increase of heat generation parameter. 
3) Both the velocity and concentration profiles increase with the increase of Soret 

number. 
4) The velocity profiles decrease with the increase of magnetic field parameter and 

where as both temperature and concentration profiles increase with the increase of 
magnetic field parameter,  

5) In mixed convection regime, both the Skin-friction coefficient and Sherwood number 
increases whereas the Nusselt number decreases with the increase of both heat 
generation parameter and Soret number. 

6) The viscous dissipation effects is to enhance the velocity and temperature profiles. 
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